摘要:
A method for polishing wafers includes providing a wafer having a process layer formed thereon; providing a polishing tool having a plurality of control zones and being adapted to polish the process layer based on an operating recipe, the operating recipe having a control variable corresponding to each of the control zones; measuring a pre-polish thickness profile of the process layer; comparing the pre-polish thickness profile to a target thickness profile to determine a desired removal profile; determining values for the control variables associated with the control zones based on the desired removal profile; and modifying the operating recipe of the polishing tool based on the values determined for the control variables. A processing line includes a polishing tool, a metrology tool, and a process controller. The polishing tool is adapted to polish a wafer having a process layer formed thereon based on an operating recipe. The polishing tool includes a plurality of control zones and the operating recipe includes a control variable corresponding to each of the control zones. The metrology tool is adapted to measure a pre-polish thickness profile of the process layer. The process controller is adapted to compare the pre-polish thickness profile to a target thickness profile to determine a desired removal profile, determine values for the control variables associated with the control zones based on the desired removal profile, and modify the operating recipe of the polishing tool based on the values determined for the control variables.
摘要:
A method is disclosed for the definition of the poly-1 layer in a semiconductor wafer. A non-critical mask is used to recess field oxides in the periphery prior to poly-1 deposition by an amount equal to the final poly-1 thickness. A complimentary non-critical mask is used to permit CMP of the core to expose the tops of core oxide mesas from the shallow isolation trenches.
摘要:
A rotary chemical-mechanical polishing apparatus with multiple fluid-bearing platens for use in semiconductor fabrication is described together with a method for chemical-mechanical polishing of semiconductor substrates (“wafers”). A single polishing pad is affixed to a pad backing composed of a thin metal membrane. A polishing fluid is introduced onto an upper surface of the polishing pad. One or more wafers are held face down upon the upper surface of the polishing pad by carriers. Fluid-bearing platens are placed below a lower surface of the pad backing and located directly underneath each wafer. While polishing wafers, the polishing pad and pad backing are rotated about their common center, each carrier and wafer pair is rotated about its common center, the carriers apply a down force on the wafers, and the fluid-bearing platens support the pad backing. The fluid-bearing platens support the pad backing with a fluid flow that exerts a pressure on the pad backing. Within a single fluid-bearing platen, multiple zones of different fluid flow rates allow control of the polishing uniformity. Further, the fluid flow rate distribution of each fluid-bearing platen can be individually controlled.
摘要:
A method is presented for forming a liner upon spaced interconnect structures arranged upon a semiconductor topography. An oxide layer may be deposited to form the liner. The spaced interconnect structures may each include an interlevel dielectric portion arranged upon a metal interconnect portion, with gaps defined between adjacent interconnect structures. A low k dielectric material may be deposited over the interconnect structures such that the low k material substantially fills the gaps between adjacent interconnect structures. The low k dielectric material may then be planarized, preferably by chemical mechanical polishing.
摘要:
A method for filling a trench is provided. A wafer having at least a first layer formed thereon is provided. A trench is formed in the first layer. The depth of the trench is measured. A target thickness is determined based on the depth of the trench. A second layer of the target thickness is formed over the trench. A processing line includes a trench etch tool, a first metrology tool, a trench fill tool, and an automatic process controller. The trench etch tool is adapted to form a trench in a first layer on a wafer. The first metrology tool is adapted to measure the depth of the trench. The trench fill tool is adapted to form a second layer over the first layer based on an operating recipe. An automatic process controller is adapted to determine a target thickness based on the depth of the trench and modify the operating recipe of the trench fill tool based on the target thickness.
摘要:
According to an example embodiment, the present invention is directed to a CMP apparatus having a polishing table, a wafer carrier adapted to carry a wafer on a pad, and a conditioning wheel. If the pad is being polished in a center-fast or center-slow manner, the conditioning wheel is used to condition the pad and to improve the center-fast or center-slow condition. Benefits of using this embodiment include improved wafer quality, improved pad life, a reduction in defective wafers, and faster production.
摘要:
A method for filling a trench is provided. A wafer having at least a first layer formed thereon is provided. A trench is formed in the first layer. The depth of the trench is measured. A target thickness is determined based on the depth of the trench. A second layer of the target thickness is formed over the trench. A processing line includes a trench etch tool, a first metrology tool, a trench fill tool, and an automatic process controller. The trench etch tool is adapted to form a trench in a first layer on a wafer. The first metrology tool is adapted to measure the depth of the trench. The trench fill tool is adapted to form a second layer over the first layer based on an operating recipe. An automatic process controller is adapted to determine a target thickness based on the depth of the trench and modify the operating recipe of the trench fill tool based on the target thickness.
摘要:
A polishing assembly for CMP of semiconductors includes an air bearing platen having multiple concentric rings of air holes, with each ring defining an air delivery zone. Each ring includes air source holes alternating with air drain holes. A distribution plate is mated with the platen, and the distribution plate has alternating rings of air supply and air exhaust rings. The air supply rings include air supply apertures that are aligned with the air source holes in the platen, and the air exhaust rings include air exhaust apertures that are aligned with the air drain holes in the platen. With this structure, the air distribution profile of each air delivery zone can be established relatively independently of the profiles of the other zones.
摘要:
A polishing pad having a wear level indicator and a polishing system employing the same is provided. A polishing pad, in accordance with one embodiment of the invention, includes a pad structure and an indicator, disposed in the pad structure, indicating the wear level of the pad structure. The pad structure may, for example, include a top pad and a bottom pad with the indicator being disposed in the top pad. The wear level may, for example, be a critical thickness of the polishing pad which indicates the end of the pad lifetime or which indicates the need to change polishing processing. The use of a wear level indicator allows for efficient and reliable pad wear level indication.
摘要:
A method includes forming a layer of silicon oxynitride (SiON), silicon rich nitride (SiRN) or silicon nitride (Si3N4) over a layer of semiconducting material. The method further includes forming a first layer of anti-reflective material over the layer of SiON, SiRN or Si3N4 and forming a second layer of anti-reflective material over the first layer. The method also includes using the first layer, second layer and layer of SiON, SiRN or Si3N4 as a mask when etching a pattern in the layer of semiconducting material.
摘要翻译:一种方法包括在半导体材料层上形成氮氧化硅(SiON),富硅氮化物(SiRN)或氮化硅(Si3N4)层。 该方法还包括在SiON,SiRN或Si 3 N 4层上形成第一层抗反射材料,并在第一层上形成第二层抗反射材料。 该方法还包括当蚀刻半导体材料层中的图案时,使用第一层,第二层和SiON,SiRN或Si3N4层作为掩模。