摘要:
A semiconducting tetrahydroacridinoacridine compound of Formula (I): wherein R1 to R12 are as described herein. The compounds are designed to ensure air stability, good solubility, and high mobility.
摘要:
A copolymer having a structure represented by: wherein R1 and R2 are independently selected from a hydrogen, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group; Ar1 and Ar2 are independently an aromatic or heteroaromatic group including about 4 to about 30 carbon atoms, and can be optionally substituted; a and b are independently an integer from 1 to about 4; Ar3 and Ar4 are independently an aromatic or heteroaromatic group comprising about 4 to about 20 carbon atoms, and can be optionally substituted; c and e are independently an integer from about 0 to about 2; d is 1 to 4 and the carbon-carbon double bond is in the E-configuration; and n represents a number from 2 to about 5,000.
摘要翻译:具有以下结构的共聚物:其中R1和R2独立地选自氢,取代或未取代的烷基,取代或未取代的芳基或取代或未取代的杂芳基; Ar 1和Ar 2独立地是包括约4至约30个碳原子的芳族或杂芳族基团,并且可以任选被取代; a和b独立地为1至约4的整数; Ar 3和Ar 4独立地是包含约4至约20个碳原子的芳族或杂芳基,并且可以任选被取代; c和e独立地为约0至约2的整数; d为1〜4,碳 - 碳双键为E构型; n表示2〜5000的数。
摘要:
This invention relates to novel photochromic and electrochromic monomers and polymers based on 1,2-dithienylcyclopentene derivatives and method of using and synthesizing same. The compounds are reversibly interconvertible between different isomeric forms under suitable photochromic or electrochromic conditions. The electrochromic conversion may be catalytic. The application also relates to ultra-high density homopolymers prepared using ring-opening methathesis polymerization (ROMP) where the central ring of the 1,2-bis(3-thienyl)-cyclopentene is incorporated directly into the polymer backbone. The monomer units may be readily functionalized to enable the synthesis of polymers with diverse structural and electronic properties. The compounds have many potential applications including high-density optical information storage systems, photoregulated molecular switches, reversible holographic systems, ophthalmic lenses, actinometry and molecular sensors, photochromic inks, paints and fibers and optoelectronic systems such as optical waveguides, Bragg reflectors and dielectric mirrors.
摘要:
This invention relates to novel photochromic and electrochromic monomers and polymers based on 1,2-dithienylcyclopentene derivatives and method of using and synthesizing same. The compounds are reversibly interconvertible between different isomeric forms under suitable photochromic or electrochromic conditions. The electrochromic conversion may be catalytic. The application also relates to ultra-high density homopolymers prepared using ring-opening methathesis polymerization (ROMP) where the central ring of the 1,2-bis(3-thienyl)-cyclopentene is incorporated directly into the polymer backbone. The monomer units may be readily functionalized to enable the synthesis of polymers with diverse structural and electronic properties. The compounds have many potential applications including high-density optical information storage systems, photoregulated molecular switches, reversible holographic systems, ophthalmic lenses, actinometry and molecular sensors, photochromic inks, paints and fibers and optoelectronic systems such as optical waveguides, Bragg reflectors and dielectric mirrors.
摘要:
This invention relates to novel photochromic and electrochromic monomers and polymers based on 1,2-dithienylcyclopentene derivatives and method of using and synthesizing same. The compounds are reversibly interconvertible between different isomeric forms under suitable photochromic or electrochromic conditions. The electrochromic conversion may be catalytic. The application also relates to ultra-high density homopolymers prepared using ring-opening methathesis polymerization (ROMP) where the central ring of the 1,2-bis(3-thienyl)-cyclopentene is incorporated directly into the polymer backbone. The monomer units may be readily functionalized to enable the synthesis of polymers with diverse structural and electronic properties. The compounds have many potential applications including high-density optical information storage systems, photoregulated molecular switches, reversible holographic systems, ophthalmic lenses, actinometry and molecular sensors, photochromic inks, paints and fibers and optoelectronic systems such as optical waveguides, Bragg reflectors and dielectric mirrors.