Abstract:
Techniques described herein include solutions for enabling user equipment (UEs) to report UE capability information based on deployed channel bandwidths (BWs) in each radio frequency (RF) band used by a base station. During an attached procedure, a base station may UE capability information from a UE and receive requested frequency band information (RFB) in response thereto. The RFB information (e.g., UE capability information) may be based on a comparison of an actual maximum BW for all possible CA combinations for the base station and Ω—a maximum aggregate BW supported by the UE. The UE may report the RFB to the base station for the CA combinations with a maximum BW that is less than or equal to Ω. After reporting, the UE may proceed with the attach procedure. Additional and alternative features and techniques are also described.
Abstract:
This disclosure relates to techniques for a link budget limited UE to improve communications performance with a cellular network. The UE may perform signal to interference noise ratio (SINR) measurements and use these measurements to adjust a received signal power value that is provided to the cellular network as a received signal power measurement. The UE may generate the received signal power value based at least in part on the SINR measurement in order to reduce the likelihood of handover when the UE has good SINR but poor received signal power. The UE may also provide preferred configuration information to the base station which enhances the performance of the UE when link budget limited. The configuration information may specify one or more parameter values designed to provide improved performance for a link budget limited device.
Abstract:
Apparatus and methods to access services of multiple wireless networks by a wireless device are disclosed. The wireless device attaches to a primary wireless network using a primary subscriber identity module (SIM) or electronic SIM (eSIM) via a radio access network (RAN) of the primary wireless network; establishes (i) a context for Internet Protocol (IP) network data connections using the primary SIM or eSIM and (ii) a packet data network (PDN) connection via the RAN of the primary wireless network to a gateway of a secondary wireless network using a secondary SIM or eSIM; and registers for access to services of the secondary wireless network with a server of the secondary wireless network using the secondary SIM or eSIM. The wireless device can access services of both the primary wireless network and the secondary wireless network simultaneously via the RAN of the primary wireless network.
Abstract:
In some embodiments, a wireless device such as a user equipment (UE) may communicate with a base station using an advanced form of carrier aggregation. The UE may provide signaling to the network specifying a number P of downlink component carriers to be configured for use by the UE for downlink carrier aggregation and a number Q of uplink component carriers to be configured for use by the UE for uplink carrier aggregation. The UE can only utilize a lesser number M of downlink component carriers at any given time in downlink carrier aggregation and can only utilize a lesser number N of uplink component carriers at any given time in uplink carrier aggregation. Thus the UE may request the network to configure a greater number P and Q of downlink and uplink component carriers, respectively, than the UE can actually use at any instant of time.
Abstract:
Performing a circuit-switched fallback (CSFB) call with improved reliability. A request to establish a CSFB call may be received by a UE that is currently in a pool overlap area. The network resource controller, or the base station, transmits information to the UE which indicates the pools in which neighboring cells are operating. The UE uses this information to select a circuit-switched cell on which to operate for the CSFB operation, wherein the selected CS cell is in the same pool area as the current pool area. This prevents the UE from inadvertently camping on a CS cell in a different pool area, which could cause call failure on some networks. The information provided by the base station may comprise a pool area id, or may comprise mapping relation information that is useable by the UE to determine the current pool area.
Abstract:
Mobile devices, base stations, and/or relay stations may implement CSFB (circuit switched fallback) operations by using RRC (radio resource control) connection release and/or handover procedures. If the CSFB RAT (radio access technology) target is not well configured, the UE may be informed and provisioned by the NW during a CSFB procedure with the information to return to LTE. Having this information, the UE may perform an autonomous search of LTE cells after the CSFB call release, speeding up return to LTE. To minimize potential call failures during CSFB, the UE may autonomously perform an additional cell search, in particular a search for cells on a RAT different from the initial target RAT. This creates an opportunity to prevent call failure of CSFB calls that would otherwise fail. The UE may be provisioned during the CSFB procedure with information to perform the additional cell search, should such a search be necessary.
Abstract:
The techniques described herein include provide solutions to optimizing the battery power of a user equipment (UE) though energy optimal radio link adaption. A UE may determine an energy optimal modulation and coding scheme (MCS). An energy optimal MCS may include an MCS that enables reception of a data payload at a lowest total energy consumed by a receiver. In some implementations, the MCS may be based on several factors, including time and/or data rate constraints and changes in transfer rates relative to changes in energy consumption. The UE may communicate the energy optimal MCS to a base station, and the base station may send a data payload to the UE using an energy optimal data transfer rate that is based on the energy optimal MCS.
Abstract:
Wireless devices, networks and methods may operate to have a wireless device cause a base station to trigger voice call continuity handovers responsive to the quality of the cellular radio link in addition to the base station triggering such handovers based on location or mobility. Furthermore, wireless communication devices may also perform monitoring of multiple buffers operating within the wireless communication device and associated with different respective communication layers, in addition to monitoring the quality of the cellular radio link, to perform intelligent dropping/discarding and/or scheduling of packets at the wireless communications device. Any one or more of these features may improve the ability of the wireless communications device to achieve stated Voice over Long Term Evolution (VoLTE) performance benchmarks in the context of the realities of current VoLTE networks.
Abstract:
This disclosure relates to techniques for a link budget limited UE to improve communications performance with a cellular network. The UE may perform signal to interference noise ratio (SINR) measurements and use these measurements to adjust a received signal power value that is provided to the cellular network as a received signal power measurement. The UE may generate the received signal power value based at least in part on the SINR measurement in order to reduce the likelihood of handover when the UE has good SINR but poor received signal power. The UE may also provide preferred configuration information to the base station which enhances the performance of the UE when link budget limited. The configuration information may specify one or more parameter values designed to provide improved performance for a link budget limited device.
Abstract:
This disclosure relates to techniques for a link budget limited UE to improve communications performance with a cellular network. The UE may perform signal to interference noise ratio (SINR) measurements and use these measurements to adjust a received signal power value that is provided to the cellular network as a received signal power measurement. The UE may generate the received signal power value based at least in part on the SINR measurement in order to reduce the likelihood of handover when the UE has good SINR but poor received signal power. The UE may also provide preferred configuration information to the base station which enhances the performance of the UE when link budget limited. The configuration information may specify one or more parameter values designed to provide improved performance for a link budget limited device.