Abstract:
Systems and methods for reducing or eliminating image artifacts on a dual-layer liquid crystal display (LCD). By way of example, a system includes a first display panel and a second display panel. The system includes a processor coupled to the first display panel and the second display panel, and configured to generate a first image, and to generate a second image to be displayed on the first display panel based on the first image. The processor is configured to interpolate the second image. Interpolating the second image includes adjusting the second image according to a generated objective function bounded by a first constraint. The processor is configured to filter the second image, and to generate a third image to be displayed on the second display panel based on the first image and the second image. The third image is generated to prevent image artifacts on the second display panel.
Abstract:
An output device is set to a first state in which a value of a first characteristic of the output device is set to a first value. Pixel adjustment values for plural gray levels are set to first pixel adjustment values in response to the output device being set to the first state. The value of the first characteristic is changed from the first value to a second value to set the output device to a second state. The pixel adjustment values for the plural gray levels are updated to second pixel adjustment values in response to the output device being set to the second state. The second pixel adjustment values are derived based on the second value of the first characteristic. Pixel values applied to a plurality of pixels of the output device are corrected based on the second pixel adjustment values.
Abstract:
A display panel is initialized to a native state where no color corrections are applied. A native response of the display panel is measured in the native state. One or more calibration operations for the display panel are performed based on the measured native response and calibration data is generated. The generated calibration data is stored in a timing controller (TCON) chip of the display panel. One or more chromaticity values of the display panel are measured while driving the display panel in a calibrated state based on the generated calibration data. The measured chromaticity value of the display panel is stored as Extended Display Identification Data (EDID) or DisplayID data in the TCON.
Abstract:
Pixel values of image content are lowered in response to setting a display mode so that the lowered pixel values of the first image content are mapped to a first color gamut. The first color gamut is defined by a nominal range space and is lower than a native color gamut of a display panel. The native color gamut is defined by the nominal range space and an extended range space that is outside of the first color gamut. One or more parameters are obtained for the image content in the display mode. A color boosting operation is performed for, from among the lowered pixel values of the image content in the nominal range space, each of first pixel values that meet one of the parameters. A color associated with each of the first pixel values is proportionally enhanced without changing a corresponding hue to utilize the extended range space.
Abstract:
Pixel values of image content are lowered in response to setting a display mode so that the lowered pixel values of the first image content are mapped to a first color gamut. The first color gamut is defined by a nominal range space and is lower than a native color gamut of a display panel. The native color gamut is defined by the nominal range space and an extended range space that is outside of the first color gamut. One or more parameters are obtained for the image content in the display mode. A color boosting operation is performed for, from among the lowered pixel values of the image content in the nominal range space, each of first pixel values that meet one of the parameters. A color associated with each of the first pixel values is proportionally enhanced without changing a corresponding hue to utilize the extended range space.
Abstract:
First color response values of vertices of a first unit cube defined within a cubic color output space of the display device are measured. For each of first intermediate values determined based on the measured first color response values, RGB adjustment values are calculated by tetrahedral decomposition and interpolation so that each calculated RGB adjustment value is within a boundary defined by the first unit cube. When boundary defined by the first unit cube is reached, a second unit cube is defined within the cubic color output space, wherein a first vertex of a plurality of vertices of the second unit cube corresponds to the calculated RGB adjustment values of a previous intermediate value that is one of the first intermediate values. Second color response values corresponding to the plurality of vertices of the second unit cube except the first vertex are measured.
Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the display output based on ambient lighting conditions. For example, in cooler ambient lighting conditions such as those dominated by daylight, the display may display neutral colors using a relatively cool white. When the display is operated in warmer ambient lighting conditions such as those dominated by indoor light sources, the display may display neutral colors using a relatively warm white. Adapting to the ambient lighting conditions may ensure that the user does not perceive color shifts on the display as the user's vision chromatically adapts to different ambient lighting conditions. Adaptively adjusting images in this way can also have beneficial effects on the human circadian rhythm by displaying warmer colors in the evening.
Abstract:
A display may have a first stage such as a color liquid crystal display stage and a second stage such as a monochromatic liquid crystal display stage that are coupled in tandem so that light from a backlight passes through both stages. The dynamic range of the display may be enhanced by using the second stage to perform local dimming operations. The pixel pitch of the second stage may be greater than the pixel pitch of the first stage to ease alignment tolerances and reduce image processing complexity. The color stage and monochromatic stages may share a polarizer. A color filter in the color stage may have an array of red, green, and blue elements or an array of white, red, green, and blue elements. The color stage may be a fringe field display and the monochrome stage may be an in-plane switching display or a twisted nematic stage.
Abstract:
An electronic device may include a display and display control circuitry. The display may be calibrated to compensate for changes in display temperature. Display calibration information may be obtained during manufacturing and may be stored in the electronic device. The display calibration information may include adjustment factors configured to adjust incoming pixel values to reduce temperature-related color shifts. During operation of the electronic device, display control circuitry may determine the temperature at different locations on the display. The display control circuitry may determine the temperature at a given display pixel using the temperatures at the different locations on the display. The display control circuitry may determine adjustment values based on the temperature at the display pixel. The display control circuitry may apply the adjustment values to incoming pixel values to obtain adapted pixel values, which may in turn be provided to the display pixel.
Abstract:
An electronic device may include a display having an array of display pixels. Each display pixel may include a red subpixel, a green subpixel, a blue subpixel, and a white subpixel. The display may be controlled using display control circuitry. The display control circuitry may convert frames of display data from a red-green-blue (RGB) color space to a red-green-blue-white (RGBW) color space. The display control circuitry may supply data signals corresponding to a frame of display data in the RGBW color space to the array of display pixels. A frame of display data may be converted from the RGB color space to the RGBW color space based on an amount of color saturation in the frame of display data, based on information identifying what code is running on control circuitry in the electronic device, and/or based on ambient lighting condition information.