Abstract:
A speaker assembly including a sound radiating surface suspended over a magnet assembly, a suspension member for suspending the sound radiating surface over the magnet assembly, a voice coil extending from a bottom side of the sound radiating surface, and a capacitive displacement sensor for sensing a movement of the sound radiating surface. The capacitive displacement sensor including a first conductive plate fixedly positioned over the sound radiating surface and a second conductive plate coupled to the sound radiating surface and vertically aligned with the first conductive plate, and wherein the second conductive plate is confined to an area that is entirely radially inward of the voice coil.
Abstract:
A charge pump circuit having first and second input nodes to be coupled to a first power source, and top and bottom output nodes and an intermediate node. The charge pump circuit produces i) a voltage at the top output node that is higher than a voltage of the intermediate node, and ii) a voltage at the bottom output node that is lower than the voltage of the intermediate node. A bias voltage source has i) an input that is to be coupled to a second power source and ii) an output that produces an output voltage, which is a predetermined proportion of an input voltage at the input and that follows the input voltage downward and upward as the input voltage sags and recovers, respectively. The output of the bias voltage source is directly connected to the intermediate node of the output stage. Other embodiments are also described.
Abstract:
A method for audio signal processing, where an audio amplifier drives a load through a connector, using 1) an input audio signal, and 2) a signal from a return pin of the connector. Output headroom of the audio amplifier is automatically detected, while the amplifier is driving the load. A variable resistor circuit that is coupled to provide variable resistance between the return pin of the connector and a ground plane, is automatically adjusted, in response to the detected output headroom of the amplifier. Other embodiments are also described and claimed.
Abstract:
A programmed data processor obtains a number of input voltage measurements for a number of speaker drivers, respectively, and a sensed shared current being a measure of current in a single power supply rail that is feeding power to each of a number of audio amplifiers while the audio amplifiers are driving the speaker drivers in accordance with a number of audio channel test signals, respectively. The programmed data processor computes an estimate of electrical input impedance of each of the speaker drivers using the input voltage measurement for the speaker driver and using the sensed shared current. Other embodiments are also described and claimed.
Abstract:
An audio amplifier has a first H bridge and a second H bridge, to drive a speaker as a load. The second H bridge drives the speaker through resistors for increased output impedance. Control logic operates the first H bridge as a class D amplifier for larger amplitudes of audio signal, and operates the second H bridge as a class D amplifier for smaller amplitudes of audio signal. Other aspects are also described and claimed.
Abstract:
An excitation signal is produced on a plate of an unknown capacitor and on a plate of a known capacitor. The excitation signal is amplified over time to produce a first output signal, with gain that is proportional to capacitance of the unknown capacitor. The excitation signal is also amplified over time to produce a second output signal, with gain that is proportional to capacitance of the known capacitor. Capacitance of the unknown capacitor is computed using a mathematical function of the first and second output signals and the capacitance of the known capacitor, while being insensitive to amplitude of the excitation signal. Other embodiments are also described and claimed.
Abstract:
A speaker assembly including a sound radiating surface suspended over a magnet assembly, a suspension member for suspending the sound radiating surface over the magnet assembly, a voice coil extending from a bottom side of the sound radiating surface, and a capacitive displacement sensor for sensing a movement of the sound radiating surface. The capacitive displacement sensor including a first conductive plate fixedly positioned over the sound radiating surface and a second conductive plate coupled to the sound radiating surface and vertically aligned with the first conductive plate, and wherein the second conductive plate is confined to an area that is entirely radially inward of the voice coil.
Abstract:
An audio jack may include two contacts to electrically connect to a ground contact of an audio plug in order to detect that a metallic audio plug is inserted into the audio jack. A first of these two contacts may be grounded to form a current return path that generates a ground voltage at the ground contact of the audio plug. The second of these two contacts may be repurposed after the detection to sense the ground voltage. The sensed ground voltage may be added to right and left audio signals. The net voltages provided to the audio plug may be right and left audio signals that include the sensed ground voltage minus the actual ground voltage at the ground contact of the audio plug. This may remove the ground voltage from the net audio output signals, which may reduce crosstalk.
Abstract:
A micro speaker having a capacitive sensor to sense a motion of a speaker diaphragm, is disclosed. More particularly, embodiments of the micro speaker include a conductive surface of a diaphragm facing conductive surfaces of several capacitive plate sections across a gap. The diaphragm may be configured to emit sound forward away from a magnet of the micro speaker, and the capacitive plate sections may be supported on the magnet behind the diaphragm. In an embodiment, the gap provides an available travel for the diaphragm, which may be only a few millimeters. A sensing circuit may sense capacitances of the conductive surfaces to limit displacement of the diaphragm to within the available travel.
Abstract:
Circuits, methods, and apparatus for grounding contacts in an audio jack. One example may provide a driver, such as a charge pump, driving a first transistor or switch coupled between a first contact in an audio jack and ground, and a second transistor or switch coupled between a second contact in the audio jack and ground. The first transistor or switch and second transistor or switch may be p-channel transistors or n-channel transistors depletion or enhancement-mode transistors, floating-gate transistors, MEMs, relays, or other switching devices. The first and second transistors or switches may be on and conducting when power is removed from the driver.