Abstract:
Embodiments disclosed herein comprise a sensor. In an embodiment, the sensor comprises a substrate having a first surface and a second surface opposite from the first surface. In an embodiment, the sensor further comprises a first electrode over the first surface of the substrate, and a second electrode over the first surface of the substrate and adjacent to the first electrode. In an embodiment, the sensor further comprises a barrier layer over the first electrode and the second electrode.
Abstract:
Embodiments disclosed herein comprise a sensor. In an embodiment, the sensor comprises a substrate having a first surface and a second surface opposite from the first surface. In an embodiment, the sensor further comprises a first electrode over the first surface of the substrate, and a second electrode over the first surface of the substrate and adjacent to the first electrode. In an embodiment, the sensor further comprises a barrier layer over the first electrode and the second electrode.
Abstract:
An article includes a body that is coated with a ceramic coating. The ceramic coating may include Y2O3 in a range between about 45 mol % to about 99 mol %, ZrO2 in a range between about 1 mol % to about 55 mol %, and Al2O3 in a range between about 1 mol % to about 10 mol %. The ceramic coating may alternatively include Y2O3 in a range between about 45 mol % to about 99 mol % and Al2O3 in a range between about 1 mol % to about 10 mol %. The ceramic coating may alternatively include Y2O3 in a range between about 45 mol % to about 99 mol % and ZrO2 in a range between about 1 mol % to about 55 mol %.
Abstract translation:一种制品包括涂有陶瓷涂层的主体。 陶瓷涂层可以包括约45mol%至约99mol%范围内的Y 2 O 3,约1mol%至约55mol%范围内的ZrO 2和约1mol%至约10mol%范围内的Al 2 O 3, 。 陶瓷涂层可以可选地包括在约45mol%至约99mol%范围内的Y 2 O 3和约1mol%至约10mol%范围内的Al 2 O 3。 陶瓷涂层可以包括约45mol%至约99mol%范围内的Y 2 O 3和约1mol%至约55mol%范围内的ZrO 2。
Abstract:
A coated chamber component comprises a chamber component and a coating deposited on a surface of the chamber component, the coating comprising an electrically-dissipative material. The electrically-dissipative material is to provide a dissipative path from the coating to a ground. The coating is uniform, conformal, and has a thickness ranging from about 10 nm to about 900 nm.
Abstract:
Disclosed in some embodiments is a chamber component (such as an end effector body) coated with an ultrathin electrically-dissipative material to provide a dissipative path from the coating to the ground. The coating may be deposited via a chemical precursor deposition to provide a uniform, conformal, and porosity free coating in a cost effective manner. In an embodiment wherein the chamber component comprises an end effector body, the end effector body may further comprise replaceable contact pads for supporting a substrate and the contact surface of the contact pads head may also be coated with an electrically-dissipative material.
Abstract:
Disclosed in some embodiments is a chamber component (such as an end effector body) coated with an ultrathin electrically-dissipative material to provide a dissipative path from the coating to the ground. The coating may be deposited via a chemical precursor deposition to provide a uniform, conformal, and porosity free coating in a cost effective manner. In an embodiment wherein the chamber component comprises an end effector body, the end effector body may further comprise replaceable contact pads for supporting a substrate and the contact surface of the contact pads head may also be coated with an electrically-dissipative material.
Abstract:
Disclosed in some embodiments is a chamber component (such as an end effector body) coated with an ultrathin electrically-dissipative material to provide a dissipative path from the coating to the ground. The coating may be deposited via a chemical precursor deposition to provide a uniform, conformal, and porosity free coating in a cost effective manner. In an embodiment wherein the chamber component comprises an end effector body, the end effector body may further comprise replaceable contact pads for supporting a substrate and the contact surface of the contact pads head may also be coated with an electrically-dissipative material.
Abstract:
An article includes a body that is coated with a ceramic coating. The ceramic coating may include Y2O3 in a range between about 45 mol % to about 99 mol %, ZrO2 in a range between about 1 mol % to about 55 mol %, and Al2O3 in a range between about 1 mol % to about 10 mol %. The ceramic coating may alternatively include Y2O3 in a range between about 45 mol % to about 99 mol % and Al2O3 in a range between about 1 mol % to about 10 mol %. The ceramic coating may alternatively include Y2O3 in a range between about 45 mol % to about 99 mol % and ZrO2 in a range between about 1 mol % to about 55 mol %.