摘要:
Transmission patterns for pilot symbols transmitted from a mobile station or base station are provided. The patterns may be selected according to a location of the mobile station with respect to one or more antennas are provided. In some aspects, the pattern may be selected based upon the distance between the mobile station and the one or more antennas. In other aspect, the pattern may be based upon whether the mobile station is in handoff.
摘要:
Transmission patterns for pilot symbols transmitted from a mobile station or base station are provided. The pattern allows for improved receipt of the pilot symbols transmitted for frequency selective channels and users. In addition, schemes for improving the ability to multiplex pilot symbols without interference and/or biasing from different mobile stations over the same frequencies and in the same time slots.
摘要:
A selected rate is received for an apparatus based on a hypothesized signal-to-noise-and-interference ratio (SINR) for the apparatus, and characterized statistics of noise and interference observed at a receiver for the apparatus. Data are processed in accordance with the rate selected for the apparatus.
摘要:
A selected rate is received for an apparatus based on a hypothesized signal-to-noise-and-interference ratio (SINR) for the apparatus, and characterized statistics of noise and interference observed at a receiver for the apparatus. Data are processed in accordance with the rate selected for the apparatus.
摘要:
Transmission patterns for pilot symbols transmitted from a mobile station or base station are provided. The pattern allows for improved receipt of the pilot symbols transmitted. In addition, schemes for improving the ability to multiplex pilot symbols without interference and/or biasing from different mobile stations over the same frequencies and in the same time slots.
摘要:
To receive packets with interference cancellation, block transmissions for the packets are received on time-frequency blocks used by these packets. Receiver spatial processing is performed on input symbols to obtain detected symbols. Each packet is demodulated and decoded based on all detected symbols obtained for all block transmissions received for the packet. For each packet that is decoded correctly, the transmission for the packet is terminated, the interference due to the packet is estimated, and the estimated interference is subtracted from the input symbols for all time-frequency blocks used by the packet. Receiver spatial processing is performed on the interference-canceled symbols to obtain new detected symbols for all time-frequency blocks used by all correctly decoded packets. Each packet decoded in error and overlapping at least partially with any correctly decoded packet may be demodulated and decoded based on all detected symbols available for that packet.
摘要:
Techniques for controlling transmit power and the amount of overlapping in a quasi-orthogonal system are described. A base station for a sector receives transmissions from terminals in that sector and neighbor sectors and determines performance metrics (e.g., overall throughput) and/or QoS metrics (e.g., minimum data rate) for the terminals in the sector. The base station updates an overlapping factor based on the performance metrics and updates a QoS power control parameter based on the QoS metrics. The overlapping factor indicates the average number of overlapping transmissions sent simultaneously on each time-frequency block usable for data transmission. The QoS power control parameter ensures that the terminals in the sector can achieve minimum QoS requirements. A power control mechanism with multiple loops is used to adjust the transmit power of each terminal. The overlapping factor and QoS power control parameter are updated by two of the loops.
摘要:
Techniques are provided to support multi-carrier code division multiple access (MC-CDMA) in an orthogonal uplink of a wireless communication system. A method of wireless multi-carrier communications comprises dividing sub-carriers on an uplink into non-overlapping groups, allocating a time-frequency block including a hopping duration and a non-overlapped group, respectively, assigning a different set of orthogonal codes to each user, spreading data (or pilot) symbols of each user over the allocated time-frequency block, wherein the data (or pilot) symbols of each user are spread using the different set of orthogonal codes assigned to each user, mapping each data (or pilot) symbol to a modulation symbol in the time-frequency block, generating an orthogonal waveform based on the mapped symbols, and transmitting the orthogonal waveform.
摘要:
Techniques for utilizing a capacity-based effective signal-to-noise ratio (SNR) to improve wireless communication are described herein. In an embodiment, a mobile terminal can determine the effective SNR from a forward link channel using pilot/data symbols. The mobile terminal can convey the effective SNR to a base station. In order to minimize transmission overhead, the mobile terminal can quantize the effective SNR prior to transmitting it to the base station. In another embodiment, the base station can determine the effective SNR from a reverse link. The base station can utilize the effective SNR to facilitate scheduling transmissions from the mobile terminal, transmitting power control commands to the mobile terminal, and determining a supporting data rate for the mobile terminal, for example. Suitable SNRs include constrained, unconstrained, average, and/or approximated effective SNRs. In addition, various filters, such as an averaging filter, can be utilized to further process the effective SNR.
摘要:
A closed-loop reverse-link power control algorithm for a frequency hopping orthogonal frequency division multiple access (FH-OFDMA) system is described. The power control algorithm adjusts the user's transmit power based on effective carrier-to-interference (C/I) and Received-Power-Over-Thermal (RpOT) measurements. The algorithm is inherently stable and is effective for FH-OFDMA systems with retransmissions.