摘要:
Systems and methods for communicating with an implant within a patient's body using acoustic telemetry includes an external communications device attachable to the patient's skin. The device includes an acoustic transducer for transmitting acoustic signals into the patient's body and/or for receiving acoustic signals from the implant. The device includes a battery for providing electrical energy to operate the device, a processor for extracting data from acoustic signals received from the implant, and memory for storing the data. The device may include an interface for communicating with a recorder or computer, e.g., to transfer data from the implant and/or to receive instructions for controlling the implant. The device is secured to the patient's skin for controlling, monitoring, or otherwise communicating with the implant, while allowing the patient to remain mobile.
摘要:
An implant includes a pressure sensor, a controller for acquiring pressure data from the sensor, and an acoustic transducer for converting energy between electrical energy and acoustic energy. A capacitor is coupled to the acoustic transducer for storing electrical energy converted by the transducer and/or for providing electrical energy to operate the implant. The acoustic transducer may operate alternatively or simultaneously as an energy exchanger or an acoustic transmitter. During use, the implant is implanted within a patient's body, and an external transducer transmits a first acoustic signal into the patient's body, to energize the capacitor. The implant then obtains pressure data, and transmits a second acoustic signal to the external transducer, the second acoustic signal including the pressure data.
摘要:
Systems and methods provide intrabody communication using acoustic telemetry. The system includes a first or control implant including a first acoustic transducer, and a second implant including a switch and a second acoustic transducer coupled to the switch. The second acoustic transducer receives acoustic signals from the first acoustic transducer for closing the switch to activate the second implant. The second implant may include a sensor for measuring a physiological parameter that is transmitted using acoustic signals including the physiological data to the first implant. For example, the second implant may measure pressure in the patient's heart that may be used by the first implant to control a pacemaker. Alternatively, the second implant may blood sugar concentration that may be used by the first implant to control an insulin pump. Alternatively, the first implant may store and transfer the data to an external device for monitoring the patient.
摘要:
Systems and methods provide intrabody communication using acoustic telemetry. The system includes a first or control implant including a first acoustic transducer, and a second implant including a switch and a second acoustic transducer coupled to the switch. The second acoustic transducer receives acoustic signals from the first acoustic transducer for closing the switch to activate the second implant. The second implant may include a sensor for measuring a physiological parameter that is transmitted using acoustic signals including the physiological data to the first implant. For example, the second implant may measure pressure in the patient's heart that may be used by the first implant to control a pacemaker. Alternatively, the second implant may blood sugar concentration that may be used by the first implant to control an insulin pump. Alternatively, the first implant may store and transfer the data to an external device for monitoring the patient.
摘要:
Systems and methods provide intrabody communication using acoustic telemetry. The system includes a first or control implant including a first acoustic transducer, and a second implant including a switch and a second acoustic transducer coupled to the switch. The second acoustic transducer receives acoustic signals from the first acoustic transducer for closing the switch to activate the second implant. The second implant may include a sensor for measuring a physiological parameter that is transmitted using acoustic signals including the physiological data to the first implant. For example, the second implant may measure pressure in the patient's heart that may be used by the first implant to control a pacemaker. Alternatively, the second implant may blood sugar concentration that may be used by the first implant to control an insulin pump. Alternatively, the first implant may store and transfer the data to an external device for monitoring the patient.
摘要:
Systems and methods for communicating with an implant within a patient's body using acoustic telemetry includes an external communications device attachable to the patient's skin. The device includes an acoustic transducer for transmitting acoustic signals into the patient's body and/or for receiving acoustic signals from the implant. The device includes a battery for providing electrical energy to operate the device, a processor for extracting data from acoustic signals received from the implant, and memory for storing the data. The device may include an interface for communicating with a recorder or computer, e.g., to transfer data from the implant and/or to receive instructions for controlling the implant. The device is secured to the patient's skin for controlling, monitoring, or otherwise communicating with the implant, while allowing the patient to remain mobile.
摘要:
A system for monitoring, directing and controlling the dose of radiation in a medical procedure for irradiating a specific region of a patient's body. In its generic form, the system includes at least one sensor being implantable within, or in proximity to, the specific region of the patient's body, the at least one sensor being for sensing at least one parameter associated with the radiation. The system further includes a relaying device which is in communication with the sensor(s). The relaying device serves for relaying the information outside of the patient's body.
摘要:
An implant includes a pressure sensor, a controller for acquiring pressure data from the sensor, and an acoustic transducer for converting energy between electrical energy and acoustic energy. A capacitor is coupled to the acoustic transducer for storing electrical energy converted by the transducer and/or for providing electrical energy to operate the implant. The acoustic transducer may operate alternatively or simultaneously as an energy exchanger or an acoustic transmitter. During use, the implant is implanted within a patient's body, and an external transducer transmits a first acoustic signal into the patient's body, to energize the capacitor. The implant then obtains pressure data, and transmits a second acoustic signal to the external transducer, the second acoustic signal including the pressure data.
摘要:
Systems and methods for communicating with an implant within a patient's body using acoustic telemetry includes an external communications device attachable to the patient's skin. The device includes an acoustic transducer for transmitting acoustic signals into the patient's body and/or for receiving acoustic signals from the implant. The device includes a battery for providing electrical energy to operate the device, a processor for extracting data from acoustic signals received from the implant, and memory for storing the data. The device may include an interface for communicating with a recorder or computer, e.g., to transfer data from the implant and/or to receive instructions for controlling the implant. The device is secured to the patient's skin for controlling, monitoring, or otherwise communicating with the implant, while allowing the patient to remain mobile.
摘要:
An implant for insertion or implantation within a body includes an electrical circuit for performing one or more commands when the implant is activated, an energy storage device, and a switch coupled to the electrical circuit and the energy storage device. An acoustic transducer is coupled to the switch, the acoustic transducer being activatable upon acoustic excitation by an external acoustic energy source for closing the switch to allow current flow from the energy storage device to the electrical circuit. The one or more commands includes measuring a physiological parameter with a biosensor coupled to the electrical circuit, or controlling a therapeutic device coupled to the electrical circuit. The therapeutic device or biosensor may be activated for a predetermined time or until the switch is opened in response to another acoustic excitation of the acoustic transducer.