Optical Multiplexer/Demultiplexer Module and Associated Methods

    公开(公告)号:US20200021385A1

    公开(公告)日:2020-01-16

    申请号:US16510829

    申请日:2019-07-12

    Abstract: A TORminator module is disposed with a switch linecard of a rack. The TORminator module receives downlink electrical data signals from a rack switch. The TORminator module translates the downlink electrical data signals into downlink optical data signals. The TORminator module transmits multiple subsets of the downlink optical data signals through optical fibers to respective SmartDistributor modules disposed in respective racks. Each SmartDistributor module receives multiple downlink optical data signals through a single optical fiber from the TORminator module. The SmartDistributor module demultiplexes the multiple downlink optical data signals and distributes them to respective servers. The SmartDistributor module receives multiple uplink optical data signals from multiple servers and multiplexes them onto a single optical fiber for transmission to the TORminator module. The TORminator module coverts the multiple uplink optical data signals to multiple uplink electrical data signals, and transmits the multiple uplink electrical data signals to the rack switch.

    Mitigation of polarization impairments in optical fiber link

    公开(公告)号:US12164160B2

    公开(公告)日:2024-12-10

    申请号:US17524697

    申请日:2021-11-11

    Inventor: John Fini Chen Sun

    Abstract: An optical data communication system includes an optical transmitter and an optical receiver. A polarization-maintaining optical data communication link extends from an optical output of the optical transmitter to an optical input of the optical receiver. The polarization-maintaining optical data communication link includes at least two sections of polarization-maintaining optical fiber optically connected through an optical connector. The at least two sections of polarization-maintaining optical fiber have different lengths. The optical connector is configured to optically align a fast polarization axis of a first polarization-maintaining optical fiber to a slow polarization axis of a second polarization-maintaining optical fiber. The optical connector is also configured to optically align a slow polarization axis of the first polarization-maintaining optical fiber to a fast polarization axis of the second polarization-maintaining optical fiber.

    Polarization Diverse Receiver with Delays
    16.
    发明公开

    公开(公告)号:US20240302609A1

    公开(公告)日:2024-09-12

    申请号:US18669500

    申请日:2024-05-20

    Abstract: A first portion of incoming light and a second portion of incoming light travel in opposite directions within a first optical waveguide. A ring resonator in-couples the first portion of incoming light and the second portion of incoming light from the first optical waveguide, such that the first portion of incoming light and the second portion of incoming light travel in opposite directions within the ring resonator. A second optical waveguide is disposed to in-couple the first portion of incoming light and the second portion of incoming light couple from the ring resonator, such that the first portion of incoming light and the second portion of incoming light travel in opposite directions within the second optical waveguide away from the ring resonator. One or more photodetector(s) are optically connected to receive the first portion of incoming light and the second portion of incoming light from the second optical waveguide.

    Laser Module for Optical Data Communication System

    公开(公告)号:US20220407606A1

    公开(公告)日:2022-12-22

    申请号:US17893114

    申请日:2022-08-22

    Abstract: A laser module includes a laser source and an optical marshalling module. The laser source is configured to generate and output a plurality of laser beams. The plurality of laser beams have different wavelengths relative to each other. The different wavelengths are distinguishable to an optical data communication system. The optical marshalling module is configured to receive the plurality of laser beams from the laser source and distribute a portion of each of the plurality of laser beams to each of a plurality of optical output ports of the optical marshalling module, such that all of the different wavelengths of the plurality of laser beams are provided to each of the plurality of optical output ports of the optical marshalling module. An optical amplifying module can be included to amplify laser light output from the optical marshalling module and provide the amplified laser light as output from the laser module.

Patent Agency Ranking