摘要:
Provided is a manufacturing method of a semiconductor apparatus including: detecting a position by detecting positional deviation of the upper surface mark and the lower surface mark, by acquiring an upper surface image obtained by observing the upper surface mark from above the upper surface of the semiconductor substrate and a lower surface image obtained by observing the lower surface mark through the semiconductor substrate from above the upper surface of the semiconductor substrate; and forming an element by forming a semiconductor element in the semiconductor substrate, where in a top view in which the upper surface mark and the lower surface mark are projected onto a plane parallel to the upper surface, one of the upper surface mark and the lower surface mark is larger than an other, and the one entirely covers the other.
摘要:
A semiconductor structure body of an embodiment includes a stacked body. In the stacked body, a plurality of conductive layers and a plurality of insulating layers are alternately stacked, and a plurality of through holes penetrating the conductive layers and the insulating layers in the stacking direction are provided. In the interior of the stacked body, in a region corresponding to an identical pair of coordinates in a planar coordinate system intersecting the stacking direction, a plurality of identical alignment marks or deviation measurement marks are formed, with one or more stories each including a predetermined number of conductive layers and a predetermined number of insulating layers interposed therebetween.
摘要:
A mark forming method includes: forming recessed portion on a mark formation area of a substrate; coating the recessed portion with a polymer layer containing a block copolymer, allowing the polymer layer in the recessed portion to form a self-assembled area; selectively removing a portion of the self-assembled area; and forming a positioning mark by using the self-assembled area from which the portion thereof has been removed.
摘要:
A patterning device, for use in forming a marker on a substrate by optical projection, the patterning device including a marker pattern having a density profile that is periodic with a fundamental spatial frequency corresponding to a desired periodicity of the marker to be formed. The density profile is modulated (such as sinusoidally) so as to suppress one or more harmonics of the fundamental frequency, relative to a simple binary profile having the fundamental frequency.
摘要:
A method is provided for fabricating a photolithography alignment mark structure. The method includes providing a substrate; thrilling a first grating, a second grating, a third grating and a fourth grating in the substrate; forming a photoresist layer on a surface of the substrate; obtaining a first alignment center along a first direction and a second alignment center along a second direction based on the first grating and the fourth grating, respectively; providing a mask plate having a fifth grating pattern and a sixth grating pattern; aligning the mask plate with the substrate by using the first alignment center as an alignment center along the first direction and the second alignment center as an alignment center along the second direction; reproducing the fifth grating pattern and the sixth grating pattern in the photoresist layer; and forming a fifth grating and a sixth grating on the substrate by removing a portion of photoresist layer.
摘要:
A method for manufacturing a silicon carbide semiconductor device includes the following steps. There is prepared a first silicon carbide layer having a first main surface and a second main surface. A first recess including a side portion and a bottom portion is formed in the first main surface of the first silicon carbide layer. A second silicon carbide layer is formed in contact with the first main surface, the side portion, and the bottom portion. An image of a second recess formed at a position facing the first recess of the fourth main surface is obtained. Alignment is performed based on the image of the second recess. The first main surface corresponds to a plane angled off relative to a {0001} plane. A ratio obtained by dividing a depth of the first recess by a thickness of the second silicon carbide layer is more than 0.2.
摘要:
A light emitting device (10) includes light emitting elements (12), conductor wirings (14), and alignment marks (18) formed on a substrate (11). The alignment marks (18) and the conductor wirings (14) are formed by printing.
摘要:
Methods of forming a registration mark such as an alignment mark or overlay mark during formation of sub-lithographic structures are provided. Methods may include forming a plurality of mandrels over a hard mask over a semiconductor layer, each mandrel including a spacer adjacent thereto. At least one mandrel is selected of the plurality of mandrels and a mask is formed over the at least one selected mandrel. The plurality of mandrels are removed leaving the spacers, the mask preventing removal of the at least one selected mandrel. The mask is removed. A first etching patterns the sub-lithographic structures and the registration mark into the hard mask using the spacers as a pattern of the sub-lithographic structure and the at least one selected mandrel and adjacent spacer for the registration mark. A second etching forms the sub-lithographic structures in the semiconductor layer using the patterned hard mask and to form the registration mark in the semiconductor layer using the at least one selected mandrel and the patterned hard mask.
摘要:
A patterning device, for use in forming a marker on a substrate by optical projection, the patterning device including a marker pattern having a density profile that is periodic with a fundamental spatial frequency corresponding to a desired periodicity of the marker to be formed. The density profile is modulated (such as sinusoidally) so as to suppress one or more harmonics of the fundamental frequency, relative to a simple binary profile having the fundamental frequency.
摘要:
Metrology targets are formed by a lithographic process, each target comprising a bottom grating and a top grating. Overlay performance of the lithographic process can be measured by illuminating each target with radiation and observing asymmetry in diffracted radiation. Parameters of metrology recipe and target design are selected so as to maximize accuracy of measurement of overlay, rather than reproducibility. The method includes calculating at least one of a relative amplitude and a relative phase between (i) a first radiation component representing radiation diffracted by the top grating and (ii) a second radiation component representing radiation diffracted by the bottom grating after traveling through the top grating and intervening layers. The top grating design may be modified to bring the relative amplitude close to unity. The wavelength of illuminating radiation in the metrology recipe can be adjusted to bring the relative phase close to π/2 or 3π/2.