Abstract:
The present invention relates to a zeolitic material having the IWR type framework structure, wherein the zeolitic material comprises YO2 and X2O3 in its framework structure, wherein Y is a tetravalent element and X is a trivalent element, and wherein the framework structure of the zeolitic material comprises less than 5 weight-% weight-% of Ge calculated as GeO2 and based on 100 weight-% weight-% of YO2 contained in the framework structure, and less than 5 weight-% weight-% of B calculated as B2O3 and based on 100 weight-% weight-% of X2O3 contained in the framework structure. Further, the present invention relates to a process for preparing a zeo-litic material having the IWR type framework structure, wherein the zeolitic material comprises YO2 and X2O3 in its framework structure, wherein Y is a tetravalent element and X is a trivalent element.
Abstract:
The present invention relates to a process for the production of a zeolitic material having an MWW framework structure comprising YO2 and B2O3, wherein Y stands for a tetravalent element, said process comprising (i) preparing a mixture comprising one or more sources for YO2, one or more sources for B2O3, one or more organotemplates, and seed crystals, (ii) crystallizing the mixture obtained in (i) for obtaining a layered precursor of the MWW framework structure, (iii) calcining the layered precursor obtained in (ii) for obtaining the zeolitic material having an MWW framework structure, wherein the one or more organotemplates have the formula (I) R1R2R3N (I) wherein R1 is (C5-C8)cycloalkyl, and wherein R2 and R3 are independently from each other H or alkyl, and wherein the mixture prepared in (i) and crystallized in (ii) contains 35 wt.-% or less of H2O based on 100 wt.-% of YO2 contained in the mixture prepared in (i) and crystallized in (ii), as well as to a synthetic boron-containing zeolite which is obtainable and/or obtained according to the inventive process and to its use.
Abstract:
The present invention relates to a process for the production of a boron-containing zeolitic material having an MWW framework structure comprising YO2 and B2O3, wherein Y stands for a tetravalent element, wherein said process comprises (a) providing a mixture comprising one or more sources for YO2, one or more sources for B2O3, one or more organotemplates, and seed crystals, (b) crystallizing the mixture obtained in (a) for obtaining a layered precursor of the boron-containing MWW-type zeolitic material, (c) calcining the layered precursor obtained in (b) for obtaining the boron-containing zeolitic material having an MWW framework structure, wherein the one or more organotemplates have the formula (I): R1R2R3N, wherein R1 is (C5-C8)cycloalkyl, and wherein R2 and R3 are independently from each other H or alkyl, as well as to a synthetic boron-containing zeolite which is obtainable and/or obtained according to the inventive process as well as to its use.
Abstract:
Described is a preparation method for zeolite molecular sieves by means of solid-state reactions without the usage of organic templates. The method comprises the following steps: grinding and mixing the solid raw materials comprising the silicon source, the aluminum source and the alkali source, transferring the obtained mixture into an autoclave, conducting the crystallization for a period of 5 hours-20 days at a temperature of 50-200° C. After filtering and drying the crystallized products, molecular sieves in a powder form can be obtained. The method provides different molecular sieves, including ZSM-5 zeolite, Beta zeolite, FAU zeolite, MOR zeolite, LTA zeolite, and GIS zeolite, with a high crystallinity and an adjustable Si/Al ratio within a certain range. The obtained products exhibit a high crystallinity and a high purity, and the method does not require the use of organic templates and solvents, which avoids unnecessary consumptions during the production, simplifies the synthetic process, and also increases the yield from the autoclave reactor.
Abstract:
Described is a preparation method for zeolite molecular sieves by means of solid-state reactions without the usage of organic templates. The method comprises the following steps: grinding and mixing the solid raw materials comprising the silicon source, the aluminum source and the alkali source, transferring the obtained mixture into an autoclave, conducting the crystallization for a period of 5 hours-20 days at a temperature of 50-200° C. After filtering and drying the crystallized products, molecular sieves in a powder form can be obtained. The method provides different molecular sieves, including ZSM-5 zeolite, Beta zeolite, FAU zeolite, MOR zeolite, LTA zeolite, and GIS zeolite, with a high crystallinity and an adjustable Si/Al ratio within a certain range. The obtained products exhibit a high crystallinity and a high purity, and the method does not require the use of organic templates and solvents, which avoids unnecessary consumptions during the production, simplifies the synthetic process, and also increases the yield from the autoclave reactor.