Abstract:
Apparatus, systems, and methods for percutaneous valve replacement and/or augmentation are provided. The apparatus includes a valve having a valve frame, a valve leaflet coupled to the valve frame, and a leaflet transition member coupled to the valve leaflet. The valve leaflet and leaflet transition member can transition from a first position where the valve leaflet and leaflet frame are at least partially outside a lumen of the valve frame to a second position where the valve leaflet and the leaflet transition member are within the lumen of the valve frame.
Abstract:
An apparatus for locally controlling smooth muscle tone includes a first electrode for insertion into an artery; a barrier for preventing the first electrode from contacting an arterial wall; a second electrode; a power supply; and a controller for coupling the power supply to the electrodes. The controller is configured to cause the electrode to maintain a waveform for controlling polarization of smooth muscle tone.
Abstract:
A filter system, comprising an elongate filter body defining a lumen and having a proximal end and a distal end. A valve can be provided defining a lumen and having a reversibly sealable opening for unidirectional flow of a fluid through the lumen. The valve can be adjoined proximal the distal end of the elongate filter body, wherein the elongate filter body filters the unidirectional flow of the fluid passing through the lumen of the valve and the lumen of the elongate filter body.
Abstract:
A filter system, comprising an elongate filter body defining a lumen and having a proximal end and a distal end. A valve can be provided defining a lumen and having a reversibly sealable opening for unidirectional flow of a fluid through the lumen. The valve can be adjoined proximal the distal end of the elongate filter body, wherein the elongate filter body filters the unidirectional flow of the fluid passing through the lumen of the valve and the lumen of the elongate filter body.
Abstract:
An apparatus and method for closing an opening in a blood vessel wall is disclosed. The apparatus includes at least one member which is extended through a tissue tract formed through the epidermis and subcutaneous layer of skin and through the opening in the blood vessel. The member includes a proximal end and a distal end with the distal end being positionable proximate to the opening in the blood vessel wall. A positive electrode is positioned next to the distal end with a negative electrode being positioned next to the proximal end When the electrodes are energized an electric field is created therebetween, blood cells are attracted to the positive electrode, and a thrombus is formed at the opening in the blood vessel wall. The member may include a balloon at the distal end to temporarily occlude blood flow from the blood vessel to the tissue tract to facilitate formation of the thrombus. In addition, the shape of the balloon may be tailored to facilitate the formation of the thrombus including, but not limited to, the creation of pockets and self-supporting balloons.
Abstract:
Various configurations of systems that employ leadless electrodes to provide pacing therapy are provided. In one example, a system that provides multiple sites for pacing of myocardium of a heart includes wireless pacing electrodes that are implantable at sites proximate the myocardium using a percutaneous, transluminal, catheter delivery system. Each of the electrodes contains a source of electrical energy for pacing the myocardium and is adapted to receive electromagnetic energy from a source outside the myocardium. The system also includes a source adapted for placement outside the myocardium and that uses locally measured electrocardiograms to synchronize pacing of the heart by sending electromagnetic commands to the electrodes to pace the myocardium surrounding the electrodes. Also disclosed is various configurations of such systems, wireless electrode assemblies, and delivery catheters for delivering and implanting the electrode assemblies.
Abstract:
Some embodiments of pacing systems employ wireless electrode assemblies to provide pacing therapy. The wireless electrode assemblies may wirelessly receive energy via an inductive coupling so as to provide electrical stimulation to the surrounding heart tissue. In certain embodiments, the wireless electrode assembly may include one or more biased tines that shift from a first position to a second position to secure the wireless electrode assembly into the inner wall of the heart chamber.
Abstract:
Some embodiments of pacing systems employ wireless electrode assemblies to provide pacing therapy. The wireless electrode assemblies may wirelessly receive energy via an inductive coupling so as to provide electrical stimulation to the surrounding heart tissue. In certain embodiments, the wireless electrode assembly may include one or more biased tines that shift from a first position to a second position to secure the wireless electrode assembly into the inner wall of the heart chamber.
Abstract:
Apparatus, systems, and methods for percutaneous valve replacement and/or augmentation are provided. The apparatus includes a valve having a valve frame, a valve leaflet coupled to the valve frame, and a leaflet transition member coupled to the valve leaflet. The valve leaflet and leaflet transition member can transition from a first position where the valve leaflet and leaflet frame are at least partially outside a lumen of the valve frame to a second position where the valve leaflet and the leaflet transition member are within the lumen of the valve frame.