Abstract:
A power transmission system for a vehicle includes: an engine; a plurality of input shafts, wherein at least one of the input shafts is configured to selectively engage with the engine; a plurality of output shafts configured to mesh with a corresponding shift driving gear; a transmission gear provided on one of the output shafts; a motor power shaft; a first and a second motor gears fitted over the motor power shaft; a motor synchronizer; a reverse gear fitted over the motor power shaft; a middle idler configured to mesh with the shift driving gear provided on one of the input shafts; a reverse idler gear configured to mesh with the reverse gear and to selectively rotate together with the middle idler; and a first motor generator configured to operate correspondingly with the motor power shaft. A vehicle including the power transmission system is also provided.
Abstract:
A transmission unit for a vehicle is provided. The transmission unit includes: a plurality of input shafts, each of the input shafts being provided with a shift driving gear thereon; a plurality of output shafts, each of the output shafts being provided with a shift driven gear configured to mesh with a corresponding shift driving gear; a motor power shaft; first and second motor gears fitted over the motor power shaft; a motor synchronizer disposed on the motor power shaft and between the first and second motor gears; in which the first motor gear is configured to rotate together with one of the input shafts; the second motor gear is configured to rotate together with one of the output shafts. A power transmission system including the transmission unit and a vehicle including the power transmission system are also provided.
Abstract:
A method for controlling a synchronizer of a vehicle is provided. The vehicle comprises an engine unit, a transmission unit configured to selectively couple with the engine unit and to couple with at least one of a plurality of wheels of the vehicle, a synchronizer configured to adjust a power transmission between the transmission unit and the wheels. The method comprises acquiring an operation mode and operation parameters of the vehicle and controlling the synchronizer to adjust the power transmission between the transmission unit and the wheels based on the operation parameters. A vehicle including a controller configured to control the synchronizer according to the method is also provided. The vehicle further includes a first motor generator configured to adjust a rotating speed of the synchronizer according to a speed of the vehicle, and a second motor generator configured to drive at least one of wheels of the vehicle.
Abstract:
An energy conversion device is provided, including a motor coil (11), a bridge arm converter (12), and a bidirectional bridge arm (13). The bridge arm converter (12) is connected to the motor coil (11) and the bidirectional bridge arm (13). The motor coil (11), the bridge arm converter (12), and the bidirectional bridge arm (13) are all connected to an external charging port (10). Both the bridge arm converter (12) and the bidirectional bridge arm (13) are connected to an external battery 200. The motor coil (11), the bridge arm converter (12), and the external charging port (10) form a DC charging circuit for charging the external battery 200. The motor coil (11), the bridge arm converter (12), the bidirectional bridge arm (13), and the external charging port (10) form an AC charging circuit for charging the external battery (200). The motor coil (11), the bridge arm converter (12), and the external battery (200) form a motor drive circuit.
Abstract:
The present disclosure discloses an electric vehicle and an active safety control system and method thereof. The system includes: a wheel speed detection module configured to detect a wheel speed to generate a wheel speed signal; a steering wheel rotation angle sensor and a yaw rate sensor module, configured to detect state information of the electric vehicle; a motor controller; and an active safety controller configured to receive the wheel speed signal and state information, obtain state information of a battery pack and state information of four motors, obtain a first side slip signal or a second side slip signal according to the wheel speed signal, the state information, the battery pack and the four motors, and according to the first side slip signal or the second side slip signal, control four hydraulic brakes of the electric vehicle and control the four motors by using the motor controller.
Abstract:
The present disclosure provides a hybrid electric vehicle, a drive control method and a drive control device of a hybrid electric vehicle. The drive control method includes: obtaining a current gear position and a current operating mode of the hybrid electric vehicle, a current electric charge level of a power battery and a slope of a road where the hybrid electric vehicle is; determining whether the hybrid electric vehicle is within a taxiing start-stop interval according to the current gear position of the hybrid electric vehicle, the current electric charge level of the power battery, and the slope of the road; if the hybrid electric vehicle is within the taxiing start-stop interval, further obtaining a current speed of the hybrid electric vehicle; and causing the hybrid electric vehicle to enter a small load stop mode or a small load stall mode according to the current speed.
Abstract:
The present disclosure provides a drive control method and a drive control device of a hybrid electric vehicle. The method includes: obtaining a current gear position of the vehicle, a current electric charge level of a power battery and a slope of a road on which the vehicle is driving; determining whether the vehicle is within a taxiing start-stop interval according to the current gear position, the current electric charge level, and the slope; if the vehicle is within the taxiing start-stop interval, obtaining a current speed of the vehicle; if the current speed is greater than or equal to a first speed threshold, and less than a second speed threshold, causing the vehicle to enter a small load stop mode; and if the current speed is greater than or equal to the second speed threshold, and less than a third speed threshold, causing the vehicle to enter a small load stall mode.
Abstract:
A power transmission system for a vehicle includes: an engine; input shafts, at least one of which configured to selectively engage with the engine, each of the input shafts being provided with a shift driving gear thereon; output shafts, each of the output shafts being provided with a shift driven gear configured to mesh with a corresponding shift driving gear; a motor power shaft configured to rotate together with one of the output shafts; and a first motor generator configured to rotate together with the motor power shaft, wherein when the motor power shaft is rotated together with one of the output shafts, the first motor generator is configured to generate electric power utilizing at least parts of power generated by the engine while the vehicle in a running state or a parking state. A vehicle including the power transmission system is also provided.
Abstract:
A transmission unit includes: input shafts, each of the input shafts being provided with a shift driving gear thereon; output shafts, each of the output shafts being provided with a shift driven gear configured to mesh with a corresponding shift driving; a motor power shaft configured to rotate together with one of the output shafts; and an output unit configured to rotate with one of the output shafts at different speeds and configured to selectively engage with one of the output shafts so as to rotate together with one of the output shafts. A power transmission system including the transmission unit and a vehicle including the power transmission system are also provided.
Abstract:
A vehicle and a drive control method for the same are provided. The vehicle includes an engine unit, a transmission unit configured to selectively coupled with the engine unit, a first motor generator coupled with the transmission unit, an output unit configured to transmit a power transmitted by the transmission unit to at least one of front and rear wheels of the vehicle, a power switching device configured to adjust a power transmission between the transmission unit and the output unit, a second motor generator configured to drive the at least one of the front and rear wheels, and a power battery coupled with the first and second motor generators respectively. The drive control method includes: acquiring an operation parameter of the vehicle; and performing a drive control of the vehicle based on the operation parameter and an operation mode selected from operation modes of the vehicle.