Abstract:
A fashionable bracelet operates as a remote car key fob and a clock. The bracelet provides multiple buttons allowing a user to operate the bracelet to control access to the vehicle coupled to the bracelet. The bracelet receives voice commands to operate the vehicle. Moreover, the bracelet incorporates a GPS subsystem for auto-piloting the vehicle to the location of the user. The bracelet further incorporates multiple LEDs to provide operational feedback to the user. The clock can be turned on and off using one of the buttons. The wireless key fob functions and the clock are controlled by a microcontroller disposed within the bracelet. The bracelet includes a battery to provide power to various components of the bracelet. The battery is operatively coupled to a solar panel. The bracelet is conveniently and securely attached to the wrist of the user.
Abstract:
The present disclosure provides a hybrid electric vehicle, a drive control method and a drive control device of a hybrid electric vehicle. The drive control method includes: obtaining a current gear position and a current operating mode of the hybrid electric vehicle, a current electric charge level of a power battery and a slope of a road where the hybrid electric vehicle is; determining whether the hybrid electric vehicle is within a taxiing start-stop interval according to the current gear position of the hybrid electric vehicle, the current electric charge level of the power battery, and the slope of the road; if the hybrid electric vehicle is within the taxiing start-stop interval, further obtaining a current speed of the hybrid electric vehicle; and causing the hybrid electric vehicle to enter a small load stop mode or a small load stall mode according to the current speed.
Abstract:
Operation of a vehicle is controlled based on the presence of or absence of one or more identified foreign objects within one or more monitored zones about the vehicle. One or more transceivers receive information about the one or more foreign objects. Based on the received information and the one or more corresponding zones, one or more controllers identify a response, which may include notifying the user about the foreign object and/or generating a signal that inhibits the ignition from turning on. Controllers identify a response, which may include notifying a user about a present or absent object or generating a signal that inhibits the ignition from turning on.
Abstract:
A vehicle status monitoring apparatus monitors a vehicle status in which it is possible to control an engine to stop the engine in a case where the vehicle status satisfies first conditions and a user operation satisfies second conditions. The vehicle status monitoring apparatus calculates level information indicative of an amount of occurrence of a state in which the user operation does not satisfy the second conditions while the vehicle status satisfies the first conditions. A user is informed of the calculated level information.
Abstract:
An engine automatic start stop control apparatus for controlling an engine of a vehicle to be automatically stopped or started in response to driving conditions of a vehicle, which is equipped with a manual transmission, an automatic transmission or a continuously variable transmission (CVT). The apparatus makes a determination whether or not to allow stop (or idle stop) of the engine in consideration of a relationship between outside air temperature and engine water temperature. This prevents a catalyst from being deteriorated in performance as a result of a temperature reduction of the catalyst occurs when the engine idling is carelessly stopped. Thus, it is possible to effectively reduce discharge gas of the vehicle. The outside air temperature can be estimated based on intake air temperature which is detected after the vehicle runs for a prescribed time. The idle stop of the engine is inhibited in response to a request from an air conditioner or to avoid cool-down of the engine to be restarted. In addition, the idle stop of the engine is allowed or inhibited in consideration of remaining battery charge, particularly in the case of a hybrid vehicle which is equipped with a motor/generator in addition to the engine. The engine is automatically restarted to avoid unwanted reduction of the remaining battery charge.
Abstract:
A remote starting system for an engine of a vehicle includes a remote start handheld unit. A remote start controller may be positioned at the vehicle for starting the engine based upon the remote start handheld unit and causing the engine to run for a run time period before shutting off the vehicle engine. The remote start controller is resettable based upon the remote start handheld unit to cause the engine to run for an additional run time period while the engine is still running and before shutting off the engine. The remote start handheld unit includes a tactile indicator for providing a tactile indication to a user prior to expiration of the run time period to permit a user to use the remote start handheld unit to reset the run time period while the engine is still running and before shutting off the engine.
Abstract:
A system, method, and program product controls an operation of a vehicle based on the presence of one or more foreign objects within one or more monitored zones about the vehicle. One or more transceivers receive information about the one or more foreign objects. Based on the received information and the one or more corresponding zones, one or more controllers identify a response, which may include notifying the user about the foreign object and/or generating a signal that inhibits the ignition from turning on. The system, method, and program product also control an operation of a vehicle based on the absence of an object of the vehicle. Likewise, the one or more controllers identify a response, which may include notifying the user about the missing object and/or generating a signal that inhibits the ignition from turning on.
Abstract:
The invention relates to a method and an arrangement for starting or stopping a motor-driven motor vehicle having motor functions (1) and motor-independent vehicle functions (5) which can be used independently of the type of drive and independently of the type of motor start or motor stop. For a start operation or a stop operation, at least one command to the motor functions (1) to start or stop the motor (15) of the motor vehicle is imparted by the vehicle functions (5) via an interface (10). At least one status datum as to the motor (15) and/or the motor functions (1) is transmitted by the motor functions (1) via the interface (10) to the vehicle functions.
Abstract:
A microprocessor based interengageable engine generator set control device that provides bi-directional communication and control via a common J1939 protocol of electronic engine control units. Such engine control units provide critical engine information and control using manufacturers proprietarycodes that are readable by the interface engine controller. Engine commands are issued by programmable software and operational input in response to information received and analyzed thereby.
Abstract:
An electrical control unit for an automobile of which standby current is smaller. In an electrical control unit for an automobile having a microcomputer, an input circuit, a driver circuit, and a power supply circuit, which is started by a wake-up signal from the circuit other than the ignition switch even when the ignition switch of the automobile is cut off, the microcomputer is started by shifting the power supply circuit from an inert state to an active state to generate the voltage for operating the microcomputer, and the predetermined processing is executed.