摘要:
A fiber scanning system is provided comprising a housing (102) with a fiber (13), the fiber (13) comprising a fixed part and a free end, the fixed part being attached to a bottom of the housing (102) and the fiber (13) extending parallel to the wall of the housing (102). At least one electrical coil (12) is attached to the wall at a position in between the fixed part and the free end of the fiber (13), a winding of the electrical coil (12) being in a plane parallel to the fiber (13). A magnet (11) is attached to the fiber (13), such that the electrical coil (12) may induce a force on the magnet (11). The magnet (11) is attached to the fiber (13) at a position just before or after the electrical coil (12), a width of the magnet (11) being such that the magnet (11) extends over the electrical coil (12).
摘要:
The invention relates to an energy application planning apparatus for planning an application of energy to an object (3) like a tumor. An energy application element representation represents an energy application element (5) like an ablation needle including an energy application part for applying energy and a sensing part (7). An arrangement of the energy application element (5) with respect to the object (3) is determined depending on the positions of the energy application part and the sensing part (7) with respect to the energy application element (5) as defined by the energy application element representation and depending on the object representation. The application of energy can therefore not only be planned such that the application of energy is performed as desired, but also such that the object and/or a surrounding of the object are sensible as desired. In this way, the planning procedure can be improved.
摘要:
An optical probe system having a probe with an optical guide (G) having a distal end. The optical guide (G) is mounted inside a housing (H) so that the distal end is displaceable with respect to the housing (H). A set of actuators (A), e.g. electromagnetic drive coils, can displace the distal end by application of a drive signal (Vx, Vy). A control unit (CU) generates the drive signal (Vx, Vy) so as to provide a scanning frequency which varies according to an amplitude of the drive signal (Vx, Vy). With such probe system it is possible to scan a field of view with a scanning frequency that varies with the scanning radius. Taking into account the maximum allowable drive current, it is possible to increase scanning speed compared to scanning at the mechanical resonance frequency of the optical system, since small radii can be scanned at a high scanning frequency.
摘要:
A fiber scanning system is provided comprising a housing (102) with a fiber (13), the fiber (13) comprising a fixed part and a free end, the fixed part being attached to a bottom of the housing (102) and the fiber (13) extending parallel to the wall of the housing (102). At least one electrical coil (12) is attached to the wall at a position in between the fixed part and the free end of the fiber (13), a winding of the electrical coil (12) being in a plane parallel to the fiber (13). A magnet (11) is attached to the fiber (13), such that the electrical coil (12) may induce a force on the magnet (11). The magnet (11) is attached to the fiber (13) at a position just before or after the electrical coil (12), a width of the magnet (11) being such that the magnet (11) extends over the electrical coil (12).
摘要:
An optical probe system having a probe with an optical guide (G) having a distal end. The optical guide (G) is mounted inside a housing (H) so that the distal end is displaceable with respect to the housing (H). A set of actuators (A), e.g. electromagnetic drive coils, can displace the distal end by application of a drive signal (Vx, Vy). A control unit (CU) generates the drive signal (Vx, Vy) so as to provide a scanning frequency which varies according to an amplitude of the drive signal (Vx, Vy). With such probe system it is possible to scan a field of view with a scanning frequency that varies with the scanning radius. Taking into account the maximum allowable drive current, it is possible to increase scanning speed compared to scanning at the mechanical resonance frequency of the optical system, since small radii can be scanned at a high scanning frequency.
摘要:
Fluid lens system includes a container enclosing a fluid arranged to refract incoming waves. A pressure release mechanism is in contact with the fluid so as to compensate changes in its volume due to thermal variations. The pressure release mechanism is positioned within a pathway of incoming waves. The fluid container may be connected via a tube to the fluid as a reservoir which is arranged within or outside the container, such as beyond an image sensor. Alternatively, an easily compressible body such as a small closed metal bellows enclosing a gas, is positioned inside the fluid to absorb volume changes by compression. The container may have an inner container part that fits inside an outer container part, where the pressure release mechanism is positioned within the outer container part. A fluid filled cavity including a compressible body may be formed between the inner and outer container parts.
摘要:
A needle device according to the invention comprises a hollow shaft, an elongated insert and an operating means. The hollow shaft has a first distal end portion with a bevel, the elongated insert has a second distal end portion and is movably arranged within the hollow shaft, and the operating means is shiftable between a first condition and a second condition. Furthermore, the operating means is interconnected with the elongated insert, so that the second distal end portion is located within the hollow shaft and proximally to the bevel, when the operating means is in the first condition, and that the second distal end portion is located outside the hollow shaft and distally to the bevel, when the operating means is in the second condition.
摘要:
The invention relates to an energy application planning apparatus for planning an application of energy to an object (3) like a tumor. An energy application element representation represents an energy application element (5) like an ablation needle including an energy application part for applying energy and a sensing part (7). An arrangement of the energy application element (5) with respect to the object (3) is determined depending on the positions of the energy application part and the sensing part (7) with respect to the energy application element (5) as defined by the energy application element representation and depending on the object representation. The application of energy can therefore not only be planned such that the application of energy is performed as desired, but also such that the object and/or a surrounding of the object are sensible as desired. In this way, the planning procedure can be improved.
摘要:
The present invention relates to an optical probe (1) with an optical guide (2), e.g. an optical fibre, and a lens system (6) rigidly coupled to an end portion (2a) of the optical guide. The probe has a housing (3) with a cavity for the optical guide, the housing having at its distal end a transparent window (4), the window having an insignificant optical power as compared to the optical power of the said lens system (6). Actuation means (8) displaces the 5 lens system so as to enable optical scanning of a region of interest (ROI). The invention is particularly suited for miniature applications e.g. for in-vivo medical application. By attaching the lens system (6) to the optical guide (2) via the mount (7), the field of view (FOV) of the optical probe (1) may be determined directly by the transverse stroke of the optical fibre (2). Hence only a relatively small stroke is required. The field of view is thus 10 effectively no longer limited by the transverse stroke. The optical probe is especially advantageous for non-linear optical imaging where the optical guide may be an optical fibre with a relatively low exit numerical aperture.
摘要:
Fluid lens system, e.g. for medical imaging or medical treatment, with a container enclosing a fluid arranged to refract incoming waves. A pressure release mechanism is in contact with the fluid so as to compensate changes in its volume due to thermal variations, e.g. during high temperature medical cleaning. This pressure release mechanism is positioned within a pathway of incoming waves. In preferred embodiments a fluid container connected via a tube to the fluid as a reservoir, is arranged within or outside the container, e.g. beyond an image sensor. Alternatively, an easily compressible body, e.g. a small closed metal bellows enclosing a gas, is positioned inside the fluid to absorb volume changes by compression. In both embodiments, the pressure release elements are preferably positioned in a peripheral part of the pathway of incoming waves to not affect performance of the lens. In another aspect, a fluid lens includes a container with an inner container part that fits inside an outer container part, wherein the inner container part is in rigid connection to at least a one boundary arranged for penetration of incoming waves. The pressure release mechanism is positioned within the outer container part, and it is in contact with the fluid so as to compensate changes in volume of the fluid due to thermal variations. In one embodiment the inner and outer container parts are arranged for relative one-dimensional movement and fluid tight interconnected. In another embodiment, a fluid filled cavity is formed between the inner and outer container parts, and this cavity houses a compressible body. The lens systems are suited for applications such as medical endoscopes, catheters and needles, optically as well as acoustically based.