Abstract:
Ablation probes and methods of their use. Example probes include probe circuits configured to provide identifying information for the probe itself. The probe circuits may sense probe usage and/or age to determine probe end of life (EOL). In response to EOL, the probe circuit generates an output indicating EOL. The probe electronic circuit may also be configured to monitor probe usage via impedance or other features, independent of such operation by an ablation pulse generator.
Abstract:
Methods and devices for performing ablation. In some examples an ablation delivery system is configured to allow separate voltage levels of a capacitor stack to be accessed for use in therapy delivery. Ablation therapy systems switchable between current and voltage controlled output are described. Methods of treating a patient using adjustable interphase or interpulse delay are disclosed as well.
Abstract:
A guide catheter may include a tubular member having an inner layer defining a lumen extending therethrough, a reinforcing braid disposed about the inner layer, a plurality of steering wires interwoven through the reinforcing braid, and an outer layer disposed about the reinforcing braid. At least a portion of the reinforcing braid may be embedded within the outer layer. An introducer sleeve may be slidably disposed over the tubular member. A flush port element may be operably connected to the introducer sleeve.
Abstract:
Systems for the delivery of endoluminal devices are disclosed. An illustrative system may include a delivery sheath having an inner sheath and an outer sheath. The delivery sheath may be configured to restrain a stent in a compressed delivery configuration. The outer sheath may cover the entire length of the stent and the inner sheath may cover a portion of the length of the stent.
Abstract:
Loading tools for use with medical devices are disclosed. An example loading tool may include a tubular sleeve having a proximal end region, a distal end region, and a lumen. The distal end region may be designed to be engaged with a resilient seal member of a hemostasis valve so that a medical device disposed within the lumen can be passed through the resilient seal member. The tubular sleeve may include a tube wall. At least a portion of the tube wall may overlap to define an overlapping region.
Abstract:
A guide catheter may include a tubular member having an inner layer defining a lumen extending therethrough, a reinforcing braid disposed about the inner layer, a plurality of steering wires interwoven through the reinforcing braid, and an outer layer disposed about the reinforcing braid. At least a portion of the reinforcing braid may be embedded within the outer layer. An introducer sleeve may be slidably disposed over the tubular member. A flush port element may be operably connected to the introducer sleeve.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device for sympathetic nerve ablation may include a catheter shaft. An expandable balloon may be coupled to the catheter shaft. The balloon may be capable of shifting between an unexpanded configuration and an expanded configuration. The balloon may include a first layer and a second layer. The first layer may include a convertible circuit. An electrode may be coupled to the balloon and may be in electrical contact with the convertible circuit.
Abstract:
A renal nerve ablation device may include an elongate tubular member having a distal region. An expandable member may be coupled to the distal region. An electrode support may be coupled to the distal region of the elongate tubular member and extend over a body of the expandable member. The electrode support may be free of connection to the body of the expandable member. One or more electrodes may be coupled to the electrode support.
Abstract:
Novel and versatile apparatuses for delivering one or more of thermal ablation and irreversible electroporation therapies to target tissue. In some examples, a device includes at its distal end a plurality of electrodes that can be advanced or retracted to pierce patient tissue, with a variable position and size shaft electrode provided near the distal end of the device to allow manipulation of therapy fields to achieve various tissue destruction field shapes. A number of method of use examples are described as well.
Abstract:
Systems and methods for performing and controlling ablation therapy. Examples provide adaptive therapy outputs that allow a user to select among various feedback parameters, parameter limits, and therapy profiles, to be implemented by an ablation system. The ablation system adaptively issues therapy by monitoring one or more feedback parameters to determine changes to make to therapy outputs.