Abstract:
The present invention relates to a fire resistant pressure vessel in which the inclusion of fire resistance does add appreciably to the overall weight of the vessel over a similar vessel that is not fire resistant.
Abstract:
A method of manufacturing a composite riser section with a liner assembly comprises holding the liner assembly in a horizontal position, bowing the liner assembly upward, and winding resin impregnated fibers about the liner assembly to form a structural composite overwrap. Another method of manufacturing a composite riser with a liner assembly comprises holding the liner assembly in a horizontal position between two supports, and winding resin impregnated fibers about the liner assembly to form a structural composite overwrap. A system for manufacturing a composite riser section with a liner assembly having a longitudinal axis comprises a first support and a second support that hold the liner assembly in a horizontal position therebetween, and a plurality of rollers that rotate the liner assembly about the longitudinal axis.
Abstract:
The invention provides a chimeric CNS targeting polypeptide having a BBB-receptor binding domain and a payload polypeptide domain. The chimeric CNS targeting polypeptide can have a BBB-receptor binding domain consisting of a receptor binding domain from ApoB, ApoE, aprotinin, lipoprotein lipase, PAI-1, pseudomonas exotoxin A, transferrin, α2-macroglobulin, insulin-like growth factor, insulin, or a functional fragment thereof. Nucleic acids encoding a chimeric CNS targeting polypeptide are also provided. Further provided is a method of delivering a polypeptide to the CNS of an individual. The method consists of administering to the individual an effective amount of a chimeric CNS targeting polypeptide, said chimeric CNS targeting polypeptide comprising a BBB-receptor binding domain and a payload polypeptide domain. The method also can deliver a polypeptide to the lysosomes of CNS cells.
Abstract:
This invention relates to methods of fabricating components of a pressure vessel using a dicyclopentadiene prepolymer formulation in which the purity of the dicyclopentadiene is at least 92% wherein the formulation further comprises a reactive ethylene monomer that renders the prepolymer formulation flowable at ambient temperatures and to pressure vessels that are fabricated by said methods.
Abstract:
The present invention is directed to a protected pressure vessel comprising a one-piece electrically conductive composite boss that is isolated from contact with materials that have an electrical potential that differ from that of the conductive composite boss so as to substantially eliminate the possibility of galvanic corrosion cause by the differences in electrical potential.
Abstract:
This invention is directed to a polymeric pressure vessel comprising a wall prepared by living polymerization such that the wall comprises a single layer of polymer having two sub-layers, an inner sub-layer that is not a composite and an outer layer that is.
Abstract:
The present invention is directed to a pressure vessel comprising a conductive composite boss wherein the composite boss is isolated from contact with materials with different electrical potentials so as to substantially eliminate the possibility of galvanic corrosion.
Abstract:
The invention provides compositions for increasing the clearance of protein aggregates, and pharmaceutical compositions comprising them, and methods for making and using them, including methods for accelerating protein aggregate clearance in the CNS, e.g., for treating diseases that are characterized by protein aggregation—including some degenerative neurological diseases such as Parkinson's disease. In one aspect, the compositions of the invention specifically target synuclein, beta-amyloid and/or tau protein aggregates, and the methods of the invention can be used to specifically prevent, reverse, slow or inhibit synuclein, beta-amyloid and/or tau protein aggregation. In alternative embodiments, the compositions and methods of the invention, are used to treat, prevent, reverse (partially or completely) or ameliorate (including slowing the progression of) degenerative neurological diseases related to or caused by protein aggregation, e.g., synuclein, beta-amyloid and/or tau protein aggregation. In one aspect, compositions and methods of this invention are used to treat, prevent or ameliorate (including slowing the progression of) Parkinson's disease, fronto-temporal dementia (FTD), Alzheimer's Disease (AD), Lewy body disease (LBD) and Multiple system atrophy (MSA).
Abstract:
A boom section includes a first, a second, a third, and a fourth fiber reinforced thermoset composite material layer and a flex core layer. The first fiber reinforced thermoset composite material layer has glass fibers in a vinyl ester matrix. The second fiber reinforced thermoset composite material layer is disposed over the first composite material layer and has carbon fibers in an epoxy matrix. The flex core layer is disposed over the second composite material layer. The third fiber reinforced thermoset composite material layer is disposed over the flex core layer and has aramid fibers in a vinyl ester matrix. The fourth fiber reinforced thermoset composite material layer is disposed over the third composite material layer and has glass fibers in a vinyl ester matrix.