Abstract:
A fixing apparatus includes an endless belt, and a pressing member including a base body and an elastic layer formed on the base body. A plurality of pore portions connected to each other are provided in the elastic layer. In a case where a binary image is generated from a three-dimensional image of the elastic layer, a threshold value X μm corresponding to opening processing with which a number of pores derived from the pore portions takes a maximum value is obtained, and then pores derived from the pore portions in the elastic layer are extracted by performing opening processing with a threshold value of 2X μm, an average value of angles θ is 120° or larger and smaller than 150°.
Abstract:
A fixing member manufacturing method includes: a step of holding a longitudinal end of a resin tube by a first holding tool; a step of holding another longitudinal end of the resin tube by a second holding tool; a step of decreasing a distance between the first and second holding tools each holding the resin tube, by a predetermined amount; a step of expanding, after the decreasing step, the resin tube in a radial direction; and a step of externally fitting the resin tube, expanded in the radial direction, around an elastic material coated with an adhesive.
Abstract:
A fixing member includes a substrate and an elastic layer on the substrate. The elastic layer comprises a cured product of a silicone rubber composition containing an anatase titanium oxide particle and an addition-curable silicone rubber, and undergoes cohesive failure in 90° peel test specified in JIS K6854-1: 1999. In the fixing member, an allyl group bound to a silicon atom is present at the interface between the substrate and the elastic layer.
Abstract:
A pressing roller includes a cylindrical core metal; a first rubber layer of non-porous material provided on the core metal; and a second rubber layer of porous material provided on the first rubber layer, wherein the second rubber layer includes a thermo-conductive filler dispersed therein such that a thermal conductivity of the second rubber layer in a longitudinal direction is higher than a thermal conductivity thereof in a thickness direction, and wherein the first rubber layer includes a thermo-conductive filler dispersed therein such that a thermal conductivity of the first rubber layer in an thickness direction is higher than a thermal conductivity of the second rubber layer in the thickness direction of the second rubber layer.
Abstract:
Provided is a fixing member having a silicone rubber elastic layer blended with a carbon nanotube, the fixing member suppressing peeling at an interface in association with insufficient adhesion between a base member and the silicone rubber elastic layer at the time of the use of the fixing member, and hence securing adhesion durability. The fixing member includes a base member, an elastic layer, and a surface layer, in which: the elastic layer contains a silicone rubber and a carbon nanotube; a ratio E200/E50 of an elastic modulus E200 of the elastic layer at 200° C. to an elastic modulus E50 of the elastic layer at 50° C. is 0.5 or more and less than 1.0; an adhesive strength between the elastic layer and the base member is 3.0 N/cm or more and 20.0 N/cm or less; and the elastic layer undergoes a cohesive failure at the time of a peel test.
Abstract:
A fixing belt includes an inner layer, serving as a sliding layer, in which filler particles having an aspect ratio of 5 or more are oriented substantially in the longitudinal direction of the fixing belt.
Abstract:
An image heating apparatus includes an endless belt configured to heat an image on a sheet at a nip potion, a heat generation device configured to cause the belt to generate heat, a nip forming member configured to form the nip portion between the nip forming member and the belt, and a pressing roller configured to press an inner surface of the belt toward the nip forming member, the pressing roller including an elastic porous layer containing a plurality of filler particles, wherein a thermal conductivity of the elastic porous layer in an axial direction of the pressing roller is in a range of 6 times to 900 times a thermal conductivity of the elastic porous layer in a radial direction of the pressing roller.
Abstract:
A fixing belt includes an inner layer, serving as a sliding layer, in which filler particles having an aspect ratio of 5 or more are oriented substantially in the longitudinal direction of the fixing belt.
Abstract:
A fixing member for electrophotography having an endless shape has a base layer having an endless shape, and an elastic layer on the outer circumferential surface of the base layer. The elastic layer includes a silicone rubber and a filler dispersed in the silicone rubber. The total amount of the filler compounded in the elastic layer is 30 vol % or less based on the total volume of the elastic layer. The elastic layer satisfies the relation of λtd>λmd>λnd. λtd is a thermal conductivity of the elastic layer in the circumferential direction, λnd is a thermal conductivity of the elastic layer in the thickness direction, and λmd, is a thermal conductivity of the elastic layer in the longitudinal direction. λtd is 2.0 W/(m·K) or more, and λnd is 1.3 W/(m·K) or more.
Abstract:
A fixing belt includes a base member containing a metal, a sliding layer containing a filler and formed on a base member inner side, and a separation layer formed on a base member outer side. Assume that (i) a sliding layer cross section is obtained by cutting the sliding layer along a sliding layer thickness direction and is divided into sections each having a length that is the same as a sliding layer thickness in a direction perpendicular to the thickness direction, and (ii) a ratio of a filler area to a sliding layer area in each cross section sections is an area ratio. A period coefficient is calculated using the formula (Ave% - Min%)/Ave%, where an average of area ratios of filler areas in all the sections is Ave% and a minimum of the area ratios is Min%, and the calculated period coefficient is 0.6 or more.