Abstract:
A control method for a switched reluctance generator employing dual switched-mode power converters does not require a position sensor. In the excitation stage, the upper tube and lower tube of the main switch of a phase in the power converter are switched on, and the phase current is detected. When the phase current rises to a preset threshold, the upper tube or lower tube of the main switch of the phase is switched off, changing the phase of the switched reluctance generator into a zero voltage natural freewheeling state. When the phase current drops to the valley value, the rotor position is the end position of maximum phase inductance of the phase. This rotor position is used as the switch-off position of the main switch of the phase of the switched reluctance generator, and the upper tube and lower tube for the main switch of the phase are switched off.
Abstract:
A node energy diagnosis method for a fault of a switched reluctance motor double-switch power converter. By detecting a transient value of a phase current of a switched reluctance motor double-switch power converter, a node energy standard deviation σ is calculated to be used as a fault characteristic quantity, and a main switch lower-tube short-circuit fault of the switched reluctance motor double-switch power converter is diagnosed by adopting a node energy standard deviation σ curve of the phase current of the switched reluctance motor double-switch power converter in the whole rotation speed range. It also can be applied in fault diagnosis when a main switch lower-tube short-circuit fault occurs in two phases or more than two phases of a switched reluctance motor double-switch power converter. It is applicable to switched reluctance motor power converters with various phase numbers and a double-switch structure, is durable, reliable in fault diagnosis and good in effect, and has good practicability, and wide application prospect.
Abstract:
A three-phase switched reluctance motor torque ripple three-level suppression method. A first set of torque thresholds (th1low, th1zero, and th1up) is set in rotor position interval [0°, θr/3]. A second set of torque thresholds (th2low, th2zero, and th2up) is set in rotor position interval [θr/3, θr/2]. Power is supplied to adjacent phase A and phase B for excitation. The power supplied for excitation to phase A leads the power supplied for excitation to phase B by θr/3. An entire commutation process from phase A to phase B is divided into two intervals. In rotor position interval [0°, θ1], a phase A uses the second set of torque thresholds (th2low, th2zero, and th2up) while phase B uses the first set of torque thresholds (th1low, th1zero, th1up). Critical position θ1 automatically appears in the commutation process, thus obviating the need for additional calculations. Total torque is controlled between [Te+th2low and Te+th2up]. In rotor position interval [θ1, θr/3], phase A continues to use the second set of torque thresholds (th2low, th2zero, and th2up), phase B continues to use the first set of torque thresholds (th1low, th1zero, and th1up), and the total torque is controlled between [Te+th1low and Te+th1up]. This suppresses torque ripples of a three-phase switched reluctance motor and provides great engineering application values.
Abstract:
A memristor linear modeling method for a switched reluctance motor. A non-inverting operational amplifier circuit and an inverting operational amplifier circuit are employed to construct a switched reluctance motor linear phase inductance characteristic element.
Abstract:
A control method for a switched reluctance generator employing dual switched-mode power converters does not require a position sensor. In the excitation stage, the upper tube and lower tube of the main switch of a phase in the power converter are switched on, and the phase current is detected. When the phase current rises to a preset threshold, the upper tube or lower tube of the main switch of the phase is switched off, changing the phase of the switched reluctance generator into a zero voltage natural freewheeling state. When the phase current drops to the valley value, the rotor position is the end position of maximum phase inductance of the phase. This rotor position is used as the switch-off position of the main switch of the phase of the switched reluctance generator, and the upper tube and lower tube for the main switch of the phase are switched off.
Abstract:
A position sensorless step-wise freewheeling control method for a switched reluctance motor having dual switched-mode power converters for each phase doesn't require any additional external hardware, any rotor-position sensor, or storage of flux linkage data of the motor. After the upper and lower tubes of the main switch are switched off, and the phase of the switched reluctance motor enters into a negative voltage forced freewheeling state, the phase current is detected. When the phase current falls to a preset threshold, one of the upper or lower tubes is switched on and the phase enters into a zero voltage natural freewheeling state. When the phase current reaches a peak value, the rotor position becomes the start position of the minimum phase inductance and the rotor position is used as the switch-on position of the main switch. The upper and lower tubes are then switched on.
Abstract:
A position sensorless step-wise freewheeling control method for a switched reluctance motor having dual switched-mode power converters for each phase doesn't require any additional external hardware, any rotor-position sensor, or storage of flux linkage data of the motor. After the upper and lower tubes of the main switch are switched off, and the phase of the switched reluctance motor enters into a negative voltage forced freewheeling state, the phase current is detected. When the phase current falls to a preset threshold, one of the upper or lower tubes is switched on and the phase enters into a zero voltage natural freewheeling state. When the phase current reaches a peak value, the rotor position becomes the start position of the minimum phase inductance and the rotor position is used as the switch-on position of the main switch. The upper and lower tubes are then switched on.
Abstract:
A switch reluctance motor wide speed-regulation range cross-control method, the switch reluctance motor wide speed-regulation range control system consisting of a revolving speed regulator, a current chopper controller, an angle position controller, a chopper counter, a comparison selector and two resettable constant registers; the chopper counter counts the current chopping number of each electrical period, and according to the comparison result between a counting value of the chopper counter and a constant value set by the two constant registers, the comparison selector selects the current chopper controller or the angle position controller, such that when in the three phases of low revolving speed, medium revolving speed and high revolving speed or in the runtime of acceleration, deceleration and uniform velocity, the current chopper controller and the angle position controller can automatically switch, and seamlessly connect without being affected by load change, and switching from a turn-on angle to a turn-off angle will not cause fluctuation of torque or revolving speed of a switch reluctance motor, thus the switch reluctance motor system runs stably and has good value for engineering application.
Abstract:
A fault-tolerant control method for a position sensor of a switched reluctance motor, if the position sensor of the switched reluctance motor runs without a fault, detecting, in real time, four equal-interval or equal-angle continuous edge pulses of an output signal of the position sensor, the fourth edge pulse being the current edge pulse, and detecting time intervals (T1, T2, T3) between each two adjacent edge pulses sequentially, thereby calculating a time interval (T4) between the current edge pulse and a next edge pulse following the current edge pulse. If the position sensor of the switched reluctance motor fails, and the next edge pulse following the current edge pulse is lost, reconstructing the next edge pulse after the interval time (T4) of the current edge pulse of the output signal of the position sensor. The method can be used, when one or more position sensors of a rotatory and linear switched reluctance motor having various phases and various topology structures fail, to reconstruct an edge pulse after lost.
Abstract:
A braking torque closed-loop control system and method for a switch reluctance motor. The closed-loop control system comprises a torque regulator, a mode selector, a current regulator, an angle optimization controller and a torque estimator. On the basis of the rotating speed of the motor, the mode selector implements a phase current soft chopper control in a low rotating speed region and an angle position control in a high rotating speed region. The current regulator performs soft chopper hysteretic current regulation. The angle optimization controller optimizes a turn-on angle and a turn-off angle of a power converter master switch to reduce torque pulsation and improve braking energy feedback efficiency. The torque estimator conducts an on-line estimation of an actual braking torque estimated value of the motor based on an actual phase voltage and current of the motor to achieve braking torque signal feedback.