Abstract:
A quantitative evaluation method for the reliability of a Markov model switched reluctance motor system. The method comprises: solving a probability matrix P′T(t) of a switched reluctance motor system being in any survival state at any time t via a state conversion diagram of the switched reluctance motor system; calculating the sum of various elements of the probability matrix P′T(t) of the survival state, so that a reliability function R(t) is obtained; and thus calculating the average working time of the switched reluctance motor system before failure, thereby realizing the quantitative evaluation of the switched reluctance motor system and satisfying the requirements for the reliability analysis of a switched reluctance motor drive system. This disclosure has a good engineering application value.
Abstract:
A phase current integration method for diagnosing a fault in a switched reluctance motor power converter determines whether the main switch of a switched reluctance motor power converter is experiencing a short circuit or an open circuit fault by measuring a phase current io(t) transient value of said converter in a non-fault state as well as a present phase current i(t) transient value of said converter, so as to obtain, by an integration operation, an integration value SnO of a phase current during a certain period under the non-fault state, and an integration value Sn of a phase current during a certain period under a present state, the ratio En of the two values indicating a fault characteristic value.
Abstract:
A quantitative evaluation method for the reliability of a Markov model switch reluctance motor system. The method comprises: solving a probability matrix P′T(t) of a switch reluctance motor system being in any survival state at any time t via a state conversion diagram of the switch reluctance motor system; calculating the sum of various elements of the probability matrix P′T(t) of the survival state, so that a reliability function R(t) is obtained; and thus calculating the average working time of the switch reluctance motor system before failure, thereby realizing the quantitative evaluation of the switch reluctance motor system and satisfying the requirements for the reliability analysis of a switch reluctance motor drive system. This disclosure has a good engineering application value.
Abstract:
A fault diagnosis method for freewheeling diodes of power converter of switched reluctance motor with two main switches per phase, in which two current sensors are arranged on a power converter with two main switches per phase, wherein, one current sensor LEM1 detects the total current of the main switches connected to the DC bus, and the other current sensor LEM2 detects the total feedback current of the freewheeling diodes connected to the DC bus. By controlling ON/OFF of the upper and lower main switch tubes, short circuit fault of the upper freewheeling diode, short circuit fault of the lower freewheeling diode, short circuit fault of both the upper freewheeling diode and the lower freewheeling diode, open circuit fault of the upper freewheeling diode, open circuit fault of the lower freewheeling diode, or open circuit fault of both the upper freewheeling diode and the lower freewheeling diode can be determined.
Abstract:
A node energy diagnosis method for a fault of a switched reluctance motor double-switch power converter. By detecting a transient value of a phase current of a switched reluctance motor double-switch power converter, a node energy standard deviation σ is calculated to be used as a fault characteristic quantity, and a main switch lower-tube short-circuit fault of the switched reluctance motor double-switch power converter is diagnosed by adopting a node energy standard deviation σ curve of the phase current of the switched reluctance motor double-switch power converter in the whole rotation speed range. It also can be applied in fault diagnosis when a main switch lower-tube short-circuit fault occurs in two phases or more than two phases of a switched reluctance motor double-switch power converter. It is applicable to switched reluctance motor power converters with various phase numbers and a double-switch structure, is durable, reliable in fault diagnosis and good in effect, and has good practicability, and wide application prospect.
Abstract:
A fault-tolerant control method for a position sensor of a switched reluctance motor, if the position sensor of the switched reluctance motor runs without a fault, detecting, in real time, four equal-interval or equal-angle continuous edge pulses of an output signal of the position sensor, the fourth edge pulse being the current edge pulse, and detecting time intervals (T1, T2, T3) between each two adjacent edge pulses sequentially, thereby calculating a time interval (T4) between the current edge pulse and a next edge pulse following the current edge pulse. If the position sensor of the switched reluctance motor fails, and the next edge pulse following the current edge pulse is lost, reconstructing the next edge pulse after the interval time (T4) of the current edge pulse of the output signal of the position sensor. The method can be used, when one or more position sensors of a rotatory and linear switched reluctance motor having various phases and various topology structures fail, to reconstruct an edge pulse after lost.
Abstract:
A braking torque closed-loop control system and method for a switch reluctance motor. The closed-loop control system comprises a torque regulator, a mode selector, a current regulator, an angle optimization controller and a torque estimator. On the basis of the rotating speed of the motor, the mode selector implements a phase current soft chopper control in a low rotating speed region and an angle position control in a high rotating speed region. The current regulator performs soft chopper hysteretic current regulation. The angle optimization controller optimizes a turn-on angle and a turn-off angle of a power converter master switch to reduce torque pulsation and improve braking energy feedback efficiency. The torque estimator conducts an on-line estimation of an actual braking torque estimated value of the motor based on an actual phase voltage and current of the motor to achieve braking torque signal feedback.
Abstract:
A bus current-based short circuit fault diagnosing method for the power converter of a switched reluctance motor, which, by detecting the transient value of bus current in the power converter of a switched reluctance motor, calculates the mean value Δ of maximum wavelet transform coefficient corresponding to bus current under different scale parameters and takes the mean value as a fault characteristic quantity, and utilizes a curve of mean value Δ of maximum wavelet transform coefficient corresponding to bus current in the power converter of the switched reluctance motor under different scale parameters in the entire range of rotation speed to diagnose whether there is a short circuit fault in the position main switches of the power converter of the switched reluctance motor. The method is applicable to the diagnosis of short circuit faults in position main switches of the power converter of a switched reluctance motor in any topological structure with any number of phases, can diagnose short circuit faults accurately, and has a great value in engineering application.
Abstract:
A fault diagnosis method for freewheeling diodes of power converter of switched reluctance motor with two main switches per phase, in which two current sensors are arranged on a power converter with two main switches per phase, wherein, one current sensor LEM1 detects the total current of the main switches connected to the DC bus, and the other current sensor LEM2 detects the total feedback current of the freewheeling diodes connected to the DC bus. By controlling ON/OFF of the upper and lower main switch tubes, short circuit fault of the upper freewheeling diode, short circuit fault of the lower freewheeling diode, short circuit fault of both the upper freewheeling diode and the lower freewheeling diode, open circuit fault of the upper freewheeling diode, open circuit fault of the lower freewheeling diode, or open circuit fault of both the upper freewheeling diode and the lower freewheeling diode can be determined.
Abstract:
A node energy diagnosis method for a fault of a switched reluctance motor double-switch power converter. By detecting a transient value of a phase current of a switched reluctance motor double-switch power converter, a node energy standard deviation σ is calculated to be used as a fault characteristic quantity, and a main switch lower-tube short-circuit fault of the switched reluctance motor double-switch power converter is diagnosed by adopting a node energy standard deviation σ curve of the phase current of the switched reluctance motor double-switch power converter in the whole rotation speed range. It also can be applied in fault diagnosis when a main switch lower-tube short-circuit fault occurs in two phases or more than two phases of a switched reluctance motor double-switch power converter. It is applicable to switched reluctance motor power converters with various phase numbers and a double-switch structure, is durable, reliable in fault diagnosis and good in effect, and has good practicability, and wide application prospect.