Abstract:
Exemplified systems and methods facilitate multicasting latency optimization operations for router, switches, and other network devices, for routed Layer-3 multicast packets to provide even distribution latency and/or selective prioritized distribution of latency among multicast destinations. A list of network destinations for serially-replicated packets is traversed in different sequences from one packet to the next, to provide delay fairness among the listed destinations. The list of network destinations are mapped to physical network ports, virtual ports, or logical ports of the router, switches, or other network devices and, thus, the different sequences are also traversed from these physical network ports, virtual ports, or logical ports. The exemplified systems and methods facilitates the management of traffic that is particularly beneficial in in a data center.
Abstract:
Exemplified systems and methods facilitate multicasting latency optimization operations for router, switches, and other network devices, for routed Layer-3 multicast packets to provide even distribution latency and/or selective prioritized distribution of latency among multicast destinations. A list of network destinations for serially-replicated packets is traversed in different sequences from one packet to the next, to provide delay fairness among the listed destinations. The list of network destinations are mapped to physical network ports, virtual ports, or logical ports of the router, switches, or other network devices and, thus, the different sequences are also traversed from these physical network ports, virtual ports, or logical ports. The exemplified systems and methods facilitates the management of traffic that is particularly beneficial in a data center.
Abstract:
Exemplified systems and methods facilitate multicasting latency optimization operations for router, switches, and other network devices, for routed Layer-3 multicast packets to provide even distribution latency and/or selective prioritized distribution of latency among multicast destinations. A list of network destinations for serially-replicated packets is traversed in different sequences from one packet to the next, to provide delay fairness among the listed destinations. The list of network destinations are mapped to physical network ports, virtual ports, or logical ports of the router, switches, or other network devices and, thus, the different sequences are also traversed from these physical network ports, virtual ports, or logical ports. The exemplified systems and methods facilitates the management of traffic that is particularly beneficial in in a data center.
Abstract:
Technologies for calibrated network interlink access. In some embodiments, a system can calculate a first communication latency of a first link between a first processing element in a first switch and a second processing element in a second switch, and a second communication latency associated with a second link between the first processing element and a third processing element in a third switch. The system can determine a delta between the first communication latency and the second communication latency, and whether respective clock rates of the first switch, second switch, and third switch have a clock rate variation, to yield a clock rate variation determination. Based on the delta and clock rate variation determination, the system can determine an offset value for synchronizing the first communication latency and second communication latency. Based on the offset value, the system can calibrate traffic over the first link and/or the second link.
Abstract:
Intelligent packet analysis may be provided to determine congestion problems and lead to fast solutions in low latency networks. Specifically, a congestion analyzer system may allow a user to monitor congestion on a network while using lightweight storage. A sniffer tool may be employed to capture all packets and store associated packet information into a database.
Abstract:
Techniques are presented herein to facilitate the monitoring of occupancy of a buffer in a network device. Packets are received at a network device. Information is captured describing occupancy of the buffer caused by packet flow through the buffer in the network device. Analytics packets are generated containing the information. The analytics packets from the network device for retrieval of the information contained therein for analysis, replay of buffer occupancy, etc.
Abstract:
A method is provided in one example embodiment that includes transmitting a message from a first port to a second port, recording a timestamp of the message at each clock between the first port and the second port, and transmitting a first follow-up message from a first port to a second port to collect timestamps at each clock between the first port and the second port. The method further includes transmitting a loopback message from the second port to the first port, recording timestamps of the loopback message at each clock between the second port and the first port, and transmitting a second follow-up message from the second port to the first port to collect and append the timestamps of the loopback message at each clock.
Abstract:
A packet is received at an ingress port of a networking device and a forwarding result that identifies an egress port for the packet is generated. In parallel with the generation of the forwarding result, a network address translation (NAT) result that identifies one or more NAT rules for possible application to the packet is generated. The forwarding result and the NAT result are then used to generate a routing decision result.
Abstract:
A packet is received at an ingress port of a networking device and a forwarding result that identifies an egress port for the packet is generated. In parallel with the generation of the forwarding result, a network address translation (NAT) result that identifies one or more NAT rules for possible application to the packet is generated. The forwarding result and the NAT result are then used to generate a routing decision result.
Abstract:
A network device receives a packet that includes a plurality of header fields. The packet is parsed to sequentially obtain the plurality of header fields. One or more header fields not yet available at the network device are predicted based on one or more header fields that are available at the network device. A network processing decision is generated for the packet based on the predicted one or more header fields and the one or more header fields that are available at the network device.