Abstract:
Devices, assemblies, and methods for anchoring portions of telecommunications cables, including protective sheaths and strength members. In some examples, the devices and assemblies are adjustable to accommodate different sized cables and cable components. According to one embodiment, an assembly includes two members that cooperate via a ratcheting mechanism to adjust to different cable diameters, the assembly further including features adapted to anchor strength member yarn of a cable.
Abstract:
A telecommunications cable jacket insertion system operates to insert a telecommunication cable into a jacket after the jacket has been separately extruded. The system includes a jacket having structures for easily inserting a cable therein over a long distance in a field location. The system can further include a tool for facilitating the insertion of the cable into the jacket. Further, a cabling system includes a cable assembly that is disaggregated into a robust outer jacketing portion and a manageable fiber optic cable portion. For regions of a cable installation where a robust cable construction is desired, the manageable fiber optic cable portion is sheathed or otherwise contained within the robust outer jacketing portion. For regions of a cable installation where a robust cable construction is not needed, the manageable fiber optic cable portion extends beyond or outside of the robust outer jacketing portion.
Abstract:
A telecommunications cable jacket insertion system operates to insert a telecommunication cable into a jacket after the jacket has been separately extruded. The system includes a jacket having structures for easily inserting a cable therein over a long distance in a field location. The system can further include a tool for facilitating the insertion of the cable into the jacket. Further, a cabling system includes a cable assembly that is disaggregated into a robust outer jacketing portion and a manageable fiber optic cable portion. For regions of a cable installation where a robust cable construction is desired, the manageable fiber optic cable portion is sheathed or otherwise contained within the robust outer jacketing portion. For regions of a cable installation where a robust cable construction is not needed, the manageable fiber optic cable portion extends beyond or outside of the robust outer jacketing portion.
Abstract:
Packaged dispensers mountable to optical network terminals (ONT) are disclosed. In some examples, the dispensers include coreless wound coils and excess storage areas. Additionally, fiber optic cable distribution systems and methods thereof utilizing the disclosed coreless wound coils are further disclosed. In one example, a length of telecommunications cable is wound into a coreless coil that includes a plurality of winding separators at least partially embedded within the coil, wherein the length of telecommunications cable alternately passes on one of the first and second sides of one winding separator and on the other of the first and second sides of an adjacent winding separator. In one example, an initially cylindrically shaped coreless wound coil, with or without winding separators, can be placed into a non-round package in which the wound coil is deformed and compressed by the sidewalls of the package such that the coreless wound coil conforms to the interior perimeter of the package to have a non-cylindrical shape.
Abstract:
An optical connector includes a first sub-assembly that is factory-installed to a first end of an optical fiber and a second sub-assembly that is field-installed to the first end of the optical fiber. The optical fiber and first sub-assembly can be routed through a structure (e.g., a building) prior to installation of the second sub-assembly. The second sub-assembly interlocks with the first sub-assembly to inhibit relative axial movement therebetween. Example first sub-assemblies include a ferrule, a hub, and a strain-relief sleeve that mount to an optical fiber. Example second sub-assemblies include a mounting block; and an outer connector housing forming a plug portion.
Abstract:
An enclosure system for receiving a cable includes an enclosure having an inner chamber and an open position exposing the inner chamber and a closed position covering the inner chamber. A cable receiving port in a wall of the enclosure extends along a longitudinal axis from outside of the enclosure into the inner chamber. The cable receiving port is configured to receive a cable therein when the cable is advanced axially into the port without rotation of the cable when the enclosure is in the closed position. A mating member is associated with the cable receiving port that limits rotation of the cable when the cable is advanced axially into the port. An axial retention member is associated with the cable receiving port that limits axial movement of the cable out of the port when the cable is advanced axially into the port to a lock position.
Abstract:
An optical connector includes a first sub-assembly that is factory-installed to a first end of an optical fiber and a second sub-assembly that is field-installed to the first end of the optical fiber. The optical fiber and first sub-assembly can be routed through a structure (e.g., a building) prior to installation of the second sub-assembly. The second sub-assembly interlocks with the first sub-assembly to inhibit relative axial movement therebetween. Example first sub-assemblies include a ferrule, a hub, and a strain-relief sleeve that mount to an optical fiber. Example second sub-assemblies include a mounting block; and an outer connector housing forming a plug portion.
Abstract:
The present disclosure relates to features of a telecommunication enclosure. Example features can include mounting plate attachment features, housing latching features, housing hinge features and fiber routing features.
Abstract:
An optical connector includes a first sub-assembly that is factory-installed to a first end of an optical fiber and a second sub-assembly that is field-installed to the first end of the optical fiber. The optical fiber and first sub-assembly can be routed through a structure (e.g., a building) prior to installation of the second sub-assembly. The second sub-assembly interlocks with the first sub-assembly to inhibit relative axial movement therebetween. Example first sub-assemblies include a ferrule, a hub, and a strain-relief sleeve that mount to an optical fiber. Example second sub-assemblies include a mounting block; and an outer connector housing forming a plug portion.
Abstract:
Fiber optic splice closures adapted to house a large number of fiber splices. The closure holds a splice assembly including a support frame that supports two stacks of splice trays. The splice assembly can be inverted to access the second stack of splice trays. The support frame can also define one or more fiber organizing areas within the splice closure.