Abstract:
A method of winding a glass ribbon (10), including: winding an interleaving material (20) and the glass ribbon together to produce a roll (40); and tensioning the interleaving material so as to control a roll inter-layer pressure. By controlling the roll inter-layer pressure, the roll can be formed with straight side walls. The tension in the interleaving material can be controlled so as to be greater than 0 and ≦0.25 pounds per linear inch of width of interleaving material. Also, there is provided an apparatus for winding glass ribbon together with interleaving material into a roll. The apparatus includes: an interleaving material supply path; a glass ribbon supply path; a roll winding mechanism (46); and a means (26) for applying tension to interleaving material traveling along the interleaving material supply path, as the interleaving material is wound into roll (40), so as to produce a pressure between the layers of the roll.
Abstract:
In one embodiment a method of steering a glass web includes directing the glass web in a conveyance direction on a web conveyance pathway, contacting at least one surface of the glass web with at least one wheel of at least one idler roller, the at least one wheel of the at least one idler roller having an axis of rotation parallel to a surface of the glass web, detecting an angle between a centerline of the glass web and the conveyance direction with an angle measurement device, and modifying an orientation of the at least one idler roller and the at least one wheel about an axis of rotation substantially orthogonal to the web conveyance pathway to shift the glass web based on a detected angle between the centerline of the glass web and the conveyance direction of the web conveyance pathway.
Abstract:
Methods of processing a glass ribbon are provided. The method includes the step of traversing the glass ribbon through a travel path at a predetermined velocity and severing the glass ribbon to create an upstream web and a downstream web. The method further includes the step of increasing a relative velocity of a downstream edge portion with respect to an upstream edge portion to create a gap between an upstream severed edge and a downstream severed edge. In other example methods, a segment of the glass ribbon is removed to create a gap between an upstream severed edge and a downstream severed edge. In still further example methods, an upstream severed edge is directed along a second travel path to create a gap between the upstream severed edge and a downstream severed edge.
Abstract:
A manufacturing system includes a tape advancing through the manufacturing system and a station of the manufacturing system. The tape includes a first portion having grains of an inorganic material bound by an organic binder. The station of the manufacturing system receives the first portion of the tape and prepares the tape for sintering by chemically changing the organic binder and/or removing the organic binder from the first portion of the tape, leaving the grains of the inorganic material, to form a second portion of the tape and, at least in part, prepare the tape for sintering.
Abstract:
A manufacturing system includes a tape advancing through the manufacturing system and a station of the manufacturing system. The tape includes a first portion having grains of an inorganic material bound by an organic binder. The station of the manufacturing system receives the first portion of the tape and prepares the tape for sintering by chemically changing the organic binder and/or removing the organic binder from the first portion of the tape, leaving the grains of the inorganic material, to form a second portion of the tape and, at least in part, prepare the tape for sintering.
Abstract:
A manufacturing system includes a tape advancing through the manufacturing system and a station of the manufacturing system. The tape includes a first portion having grains of an inorganic material bound by an organic binder. The station of the manufacturing system receives the first portion of the tape and prepares the tape for sintering by chemically changing the organic binder and/or removing the organic binder from the first portion of the tape, leaving the grains of the inorganic material, to form a second portion of the tape and, at least in part, prepare the tape for sintering.
Abstract:
A manufacturing system includes a tape advancing through the manufacturing system and a station of the manufacturing system. The tape includes a first portion having grains of an inorganic material bound by an organic binder. The station of the manufacturing system receives the first portion of the tape and prepares the tape for sintering by chemically changing the organic binder and/or removing the organic binder from the first portion of the tape, leaving the grains of the inorganic material, to form a second portion of the tape and, at least in part, prepare the tape for sintering.
Abstract:
A glass ribbon coated with a flexible material, the flexible coating forming a flexible web portion that extends from an edge of the glass ribbon at least one millimeter. The flexible web portion can be used to facilitate handling of the glass ribbon in a manufacturing process, and may include registration markings, or perforations, that further facilitate precise positioning of the ribbon.
Abstract:
Apparatus and methods for non-contact testing of electronic components printed on a substrate (3) are provided. Test circuits (11) are printed on the substrate (3) at the same time as the desired electronic component. The test circuits (11) are all optical and include a first portion (13) for providing electrical energy for the test circuit (11) and a second portion (15) for generating a detectable optical signal that is indicative of at least one electrical property of the electronic component. The test circuits are used in real time and minimize the production of unusable scrap in the printing of such products as ePaper.
Abstract:
A method of winding a glass ribbon (10), including: winding an interleaving material (20) and the glass ribbon together to produce a roll (40); and tensioning the interleaving material so as to control a roll inter-layer pressure. By controlling the roll inter-layer pressure, the roll can be formed with straight side walls. The tension in the interleaving material can be controlled so as to be greater than 0 and ≦0.25 pounds per linear inch of width of interleaving material. Also, there is provided an apparatus for winding glass ribbon together with interleaving material into a roll. The apparatus includes: an interleaving material supply path; a glass ribbon supply path; a roll winding mechanism (46); and a means (26) for applying tension to interleaving material traveling along the interleaving material supply path, as the interleaving material is wound into roll (40), so as to produce a pressure between the layers of the roll.