Abstract:
A method of forming a flexible glass laminate is provided. The method includes charging a flexible glass substrate with an electrostatic charge and charging a laminate substrate with an electrostatic charge that has a polarity opposite a polarity of the charge on the flexible glass substrate. The flexible glass substrate and the laminate substrate are brought together, with an adhesive therebetween, thereby creating an adhesive bond and an electrostatic bond between the flexible glass substrate and the laminate substrate.
Abstract:
A non-contact dancer mechanism for conveying a web of brittle material includes a guide rail and a variable position web support plenum adjustably positioned on the guide rail. The variable position web support plenum may include an arcuate outer surface with a plurality of fluid vents for emitting a fluid to support the web of brittle material over and spaced apart from the arcuate outer surface thereby preventing mechanical contact and damage to the web of brittle material. A support plenum counterbalance may be mechanically coupled to the variable position web support plenum, wherein the support plenum counterbalance supports at least a portion of the weight of the variable position web support plenum on the guide rail. Apparatuses incorporating the non-contact dancer mechanism and methods for using the non-contact dancer mechanism for handling continuous webs of brittle material are also disclosed.
Abstract:
Methods and apparatus provide for sourcing a glass web, the glass web having a length and a width transverse to the length; continuously moving the glass web from the source to a destination in a transport direction along the length of the glass web; and cutting the glass web at a cutting zone into at least first and second glass ribbons as the glass web is moved from the source to the destination, the first glass ribbon having a first width and the second glass ribbon having a second width, where the first and second widths are not equal.
Abstract:
Methods of processing a glass ribbon are provided. The method includes the step of traversing the glass ribbon through a travel path at a predetermined velocity and severing the glass ribbon to create an upstream web and a downstream web. The method further includes the step of increasing a relative velocity of a downstream edge portion with respect to an upstream edge portion to create a gap between an upstream severed edge and a downstream severed edge. In other example methods, a segment of the glass ribbon is removed to create a gap between an upstream severed edge and a downstream severed edge. In still further example methods, an upstream severed edge is directed along a second travel path to create a gap between the upstream severed edge and a downstream severed edge.
Abstract:
Methods of processing a glass ribbon are provided. The method includes the step of traversing the glass ribbon through a travel path at a predetermined velocity and severing the glass ribbon to create an upstream web and a downstream web. The method further includes the step of increasing a relative velocity of a downstream edge portion with respect to an upstream edge portion to create a gap between an upstream severed edge and a downstream severed edge. In other example methods, a segment of the glass ribbon is removed to create a gap between an upstream severed edge and a downstream severed edge. In still further example methods, an upstream severed edge is directed along a second travel path to create a gap between the upstream severed edge and a downstream severed edge.
Abstract:
Methods and apparatus provide for delivering a controlled supply of gas to at least one aero-mechanical device to impart a gas flow to suspend a material sheet; preventing lateral movement of the material sheet in at least one direction when suspended; and imparting a stream of water, from a side of the material sheet opposite the at least one aero-mechanical device, to dice the material sheet when suspended.
Abstract:
A method for cutting a flexible glass ribbon includes directing the flexible glass ribbon to a flexible glass cutting apparatus including a laser. The flexible glass ribbon includes a first broad surface and a second broad surface that extend between a first edge and a second edge of the flexible glass ribbon. A laser beam is directed from the laser onto a region of the flexible glass ribbon. A crack is formed through the flexible glass ribbon using the laser beam. The crack is propagated along the flexible glass ribbon using the laser beam and a local mechanical deformation in the flexible glass ribbon.
Abstract:
Methods of processing a glass ribbon are provided. The method includes the step of traversing the glass ribbon through a travel path at a predetermined velocity and severing the glass ribbon to create an upstream web and a downstream web. The method further includes the step of increasing a relative velocity of a downstream edge portion with respect to an upstream edge portion to create a gap between an upstream severed edge and a downstream severed edge. In other example methods, a segment of the glass ribbon is removed to create a gap between an upstream severed edge and a downstream severed edge. In still further example methods, an upstream severed edge is directed along a second travel path to create a gap between the upstream severed edge and a downstream severed edge.
Abstract:
A method for cutting a flexible glass ribbon includes directing the flexible glass ribbon to a flexible glass cutting apparatus including a laser. The flexible glass ribbon includes a first broad surface and a second broad surface that extend between a first edge and a second edge of the flexible glass ribbon. A laser beam is directed from the laser onto a region of the flexible glass ribbon. A crack is formed through the flexible glass ribbon using the laser beam. The crack is propagated along the flexible glass ribbon using the laser beam and a local mechanical deformation in the flexible glass ribbon.
Abstract:
In one embodiment, an angle measurement device for measuring an angle between a web of material and a conveyance direction includes a mounting bracket, a shaft rotatably coupled to the mounting bracket such that the shaft is rotatable with respect to the mounting bracket, a caster portion coupled to a first end of the shaft and positioned to contact a surface of the web of material being drawn over a web conveyance pathway, where the caster portion is spaced apart from an axis of rotation of the shaft, and an angular displacement sensor coupled to the mounting bracket and positioned to detect an angular orientation of the shaft with respect to the mounting bracket, where the angular displacement sensor outputs a signal indicative of the angular orientation of the shaft with respect to the mounting bracket.