Abstract:
A hybrid touch system that utilizes a combination of a capacitive touch system for position sensing and an optical touch system for pressure sensing is disclosed. The optical touch system includes a transparent sheet having a surface, at least one light source and at least one detector which are operably arranged relative to the transparent sheet to transmit light through the sheet and to detect the transmitted light. Performing position sensing using the capacitive touch system simplifies the pressure-sensing optical touch system.
Abstract:
A method of forming a glass electrochemical sensor is described. In some embodiments, the method may include forming a plurality of electrical through glass vias (TGVs) in an electrode substrate; filling each of the plurality of electrical TGVs with an electrode material; forming a plurality of contact TGVs in the electrode substrate; filling each of the plurality of contact TGVs with a conductive material; patterning the conductive material to connect the electrical TGVs with the contact TGVs; forming a cavity in a first glass layer; and bonding a first side of the first glass layer to the electrode substrate.
Abstract:
A waveguide sensor system is provided. The system includes a light source and a waveguide formed from a light transmitting material. Light from the light source enters the waveguide at an input area and travels within the waveguide by total internal reflection to an analyte area and light to be analyzed travels within the waveguide from the analyte area by total internal reflection to an output area. An optical sensor is coupled to the output area and is configured to interact with the light to be analyzed. The system includes a plurality of pores located along the outer surface within the analyte area and formed in the light transmitting material of the waveguide, and the pores are configured to enhance light interaction with the analyte within the analyte area. The pores and analyte area may be protected and/or enhanced with a hydrophobic layer overlaying the pores.
Abstract:
An analyte capture device and related systems and methods are provided. The analyte capture device includes a glass material, an outer surface defined by the glass material, and a plurality of pores formed in the glass material along at least a portion of the outer surface. The analyte capture device is exposed to an environment containing an analyte for a period of time such that the analyte is captured within the plurality of pores of the glass material. The concentration of the analyte within the glass material is greater than a concentration of the analyte within the environment. The analyte capture device is then removed from the environment, and a property of the analyte within the analyte capture device is detected via an analyte detection system.
Abstract:
A waveguide sensor system is provided. The system includes a light source and a waveguide formed from a light transmitting material. Light from the light source enters the waveguide at an input area and travels within the waveguide by total internal reflection to an analyte area and light to be analyzed travels within the waveguide from the analyte area by total internal reflection to an output area. An optical sensor is coupled to the output area and is configured to interact with the light to be analyzed. The system includes a plurality of pores located along the outer surface within the analyte area and formed in the light transmitting material of the waveguide, and the pores are configured to enhance light interaction with the analyte within the analyte area.
Abstract:
An analyte capture device and related systems and methods are provided. The analyte capture device includes a glass material, an outer surface defined by the glass material, and a plurality of pores formed in the glass material along at least a portion of the outer surface. The analyte capture device is exposed to an environment containing an analyte for a period of time such that the analyte is captured within the plurality of pores of the glass material. The concentration of the analyte within the glass material is greater than a concentration of the analyte within the environment. The analyte capture device is then removed from the environment, and a property of the analyte within the analyte capture device is detected via an analyte detection system.
Abstract:
The present disclosure is directed to the use of glass wafers as carriers, interposers, or in other selected applications in which electronic circuitry or operative elements, such as transistors, are formed in the creation of electronic devices. The glass wafers generally include a glass having a coefficient of thermal expansion equal to or substantially equal to a coefficient of thermal expansion of semiconductor silicon, an indexing feature, and a coating on at least a portion of one face of the glass.
Abstract:
A waveguide sensor system is provided. The system includes a light source and a waveguide formed from a light transmitting material. Light from the light source enters the waveguide at an input area and travels within the waveguide by total internal reflection to an analyte area and light to be analyzed travels within the waveguide from the analyte area by total internal reflection to an output area. An optical sensor is coupled to the output area and is configured to interact with the light to be analyzed. The system includes a plurality of pores located along the outer surface within the analyte area and formed in the light transmitting material of the waveguide, and the pores are configured to enhance light interaction with the analyte within the analyte area.
Abstract:
A waveguide sensor system is provided. The system includes a light source and a waveguide formed from a light transmitting material. Light from the light source enters the waveguide at an input area and travels within the waveguide by total internal reflection to an analyte area and light to be analyzed travels within the waveguide from the analyte area by total internal reflection to an output area. An optical sensor is coupled to the output area and is configured to interact with the light to be analyzed. The system includes a plurality of pores located along the outer surface within the analyte area and formed in the light transmitting material of the waveguide, and the pores are configured to enhance light interaction with the analyte within the analyte area.
Abstract:
A hybrid touch system that utilizes a combination of a capacitive touch system for position sensing and an optical touch system for pressure sensing is disclosed. The optical touch system includes a transparent sheet having a surface, at least one light source and at least one detector which are operably arranged relative to the transparent sheet to transmit light through the sheet and to detect the transmitted light. Performing position sensing using the capacitive touch system simplifies the pressure-sensing optical touch system.