Abstract:
A carbon-based electrode includes activated carbon, carbon black, and a binder. The binder is fluoropolymer having a molecular weight of at least 500,000 and a fluorine content of 40 to 70 wt. %. A method of forming the carbon-based electrode includes providing a binder-less conductive carbon-coated current collector, pre-treating the carbon coating with a sodium napthalenide-based solution, and depositing onto the treated carbon coating a slurry containing activated carbon, carbon black and binder.
Abstract:
An anode in a lithium ion capacitor, including:a carbon composition comprising: a coconut shell sourced carbon in from 85 to 95 wt %; a conductive carbon in from 1 to 10 wt %; and a binder in from 3 to 8 wt %; andan electrically conductive substrate,wherein the coconut shell sourced carbon has a disorder (D) peak to graphitic (G) peak intensity ratio by Raman analysis of from 1.40 to 1.85; and by elemental analysis a hydrogen content of from 0.01 to 0.25 wt %; a nitrogen content of from 0.01 to 0.55 wt %; and an oxygen content of from 0.01 to 2 wt %.Also disclosed are methods of making and using the carbon composition.
Abstract:
An anode in a lithium ion capacitor, including: a carbon composition comprising: a coke sourced carbon, a conductive carbon, and a binder as defined herein; and an electrically conductive substrate supporting the carbon composition, wherein the coke sourced carbon has a disorder by Raman analysis as defined herein; and a hydrogen content; a nitrogen content; an and oxygen content as defined herein. Also disclosed is a method of making the anode, a method of making the lithium ion capacitor, and methods of use thereof.
Abstract:
A solid-state electrolyte sheet includes scandia-stabilized zirconia grains and a thickness from 10 micrometers to 300 micrometers. In aspects, the solid-state electrolyte sheet exhibits an ionic conductivity at 850° C. of 9.5 S/cm or more. In aspects, the scandia-stabilized zirconia grains includes from 3 mol % to 11 mol % or from 3 mol % to 6 mol % scandia. In aspects, an average grain size can be from 0.1 micrometers to 2.5 micrometers. In aspects, a majority of pores can be a closed porosity. In aspects, the solid-state electrolyte sheet can be part of a solid oxide fuel cell and/or a solid oxide electrolyzer cell. Methods include casting a green tape comprising scandia-stabilized zirconia and firing the green tape to form the solid-state electrolyte sheet. In aspects, the firing can include heating at a maximum temperature of 1650° C. or less and/or heating at temperatures of 600° C. or more for 90 minutes or less.
Abstract:
A lithium ion energy and power system including: a housing containing: at least three electrodes including: at least one first electrode including a cathodic faradaic energy storage material; at least one second electrode including an anodic faradaic energy storage material; and at least one third electrode including a cathodic non-faradaic energy storage material, wherein the at least one first, second, and third electrodes are adjacent as defined herein, and the at least one second electrode is electrically isolated from the electrically coupled at least one first electrode and the at least one third electrode; a separator between the electrodes; and a liquid electrolyte between the electrodes. Also disclosed is a method of making and using the disclosed lithium ion energy and power system.
Abstract:
A method for pre-doping a lithium ion capacitor, including: compressing a lithium ion capacitor of the formula: C/S/A/S/C/S/A/S/C, where: /A/ is an anode coated on both sides with an anode carbon layer, and each anode carbon layer is further coated with lithium composite powder (LCP) layer; C/ is a cathode coated on one side with a layer of an cathode carbon mixture; and S is a separator; and a non-aqueous electrolyte; and conditioning the resulting compressed lithium ion capacitor, for example, at a rate of from C/20 to 4C, and the conditioning redistributes the impregnated lithium as lithium ions in the anode carbon structure. Also disclosed is an carbon coated anode having lithium composite powder (LCP) layer compressed on the carbon coated anode.
Abstract:
A method for pre-doping a lithium ion capacitor, including: compressing a lithium ion capacitor of the formula: C/S/A/S/C/S/A/S/C, where: /A/ is an anode coated on both sides with an anode carbon layer, and each anode carbon layer is further coated with lithium composite powder (LCP) layer; C/ is a cathode coated on one side with a layer of an cathode carbon mixture; and S is a separator; and a non-aqueous electrolyte; and conditioning the resulting compressed lithium ion capacitor, for example, at a rate of from C/20 to 4C, and the conditioning redistributes the impregnated lithium as lithium ions in the anode carbon structure. Also disclosed is an carbon coated anode having lithium composite powder (LCP) layer compressed on the carbon coated anode.
Abstract:
A carbon-based electrode includes activated carbon, carbon black, and a binder. The binder is fluoropolymer having a molecular weight of at least 500,000 and a fluorine content of 40 to 70 wt. %. A method of forming the carbon-based electrode includes providing a binder-less conductive carbon-coated current collector, pre-treating the carbon coating with a sodium napthalenide-based solution, and depositing onto the treated carbon coating a slurry containing activated carbon, carbon black and binder.
Abstract:
A lithium ion energy and power system including: a housing containing: at least three electrodes including: at least one first electrode including a cathodic faradaic energy storage material; at least one second electrode including an anodic faradaic energy storage material; and at least one third electrode including a cathodic non-faradaic energy storage material, wherein the at least one first, second, and third electrodes are adjacent as defined herein, and the at least one second electrode is electrically isolated from the electrically coupled at least one first electrode and the at least one third electrode; a separator between the electrodes; and a liquid electrolyte between the electrodes. Also disclosed is a method of making and using the disclosed lithium ion energy and power system.
Abstract:
An anode in a lithium ion capacitor, including: a carbon composition comprising: a phenolic resin sourced carbon, a conductive carbon, and a binder as defined herein; and an electrically conductive substrate supporting the carbon composition, wherein the phenolic resin sourced carbon has a disorder by Raman analysis as defined herein; and a hydrogen content; a nitrogen content; an and oxygen content as defined herein. Also disclosed is a method of making the anode, a method of making the lithium ion capacitor, and methods of use thereof.