Abstract:
A method for producing activated carbon includes heating a phenolic novolac resin carbon precursor at a carbonization temperature effective to form a carbon material, and reacting the carbon material with CO2 at an activation temperature effective to form the activated carbon. The resulting activated carbon can be incorporated into a carbon-based electrode of an EDLC. Such EDLC can exhibit a potential window and thus an attendant operating voltage of greater than 3V.
Abstract:
An encapsulated lithium particle including: a core comprised of at least one of: lithium; a lithium metal alloy; or a combination thereof; and a shell comprised of a lithium salt, an oil, and optionally a binder, and the shell encapsulates the core, and the particle size is from 10 to 500 microns. Also, disclosed is a method of making the particle and using the particle in electrical devices such as a capacitor or a battery.
Abstract:
An anode in a lithium ion capacitor, including:a carbon composition comprising: a coconut shell sourced carbon in from 85 to 95 wt %; a conductive carbon in from 1 to 10 wt %; and a binder in from 3 to 8 wt %; andan electrically conductive substrate,wherein the coconut shell sourced carbon has a disorder (D) peak to graphitic (G) peak intensity ratio by Raman analysis of from 1.40 to 1.85; and by elemental analysis a hydrogen content of from 0.01 to 0.25 wt %; a nitrogen content of from 0.01 to 0.55 wt %; and an oxygen content of from 0.01 to 2 wt %.Also disclosed are methods of making and using the carbon composition.
Abstract:
An anode in a lithium ion capacitor, including: a carbon composition comprising: a coconut shell sourced carbon in from 85 to 95 wt %; a conductive carbon in from 1 to 10 wt %; and a binder in from 3 to 8 wt %; and an electrically conductive substrate, wherein the coconut shell sourced carbon has a disorder (D) peak to graphitic (G) peak intensity ratio by Raman analysis of from 1.40 to 1.85; and by elemental analysis a hydrogen content of from 0.01 to 0.25 wt %; a nitrogen content of from 0.01 to 0.55 wt %; and an oxygen content of from 0.01 to 2 wt %. Also disclosed are methods of making and using the carbon composition.
Abstract:
electrically conductive honeycomb body that includes a porous honeycomb structure including a plurality of intersecting porous walls arranged to provide a matrix of cells, the porous walls including wall surfaces that define a plurality of channels extending from an inlet end to an outlet end of the structure. The porous walls include ceramic composite material that includes at least one carbide phase and at least one silicide phase, each carbide and silicide phase including one or more metals selected from the group consisting of Si, Mo, Ti, Zr and W.
Abstract:
An anode in a lithium ion capacitor, including: a carbon composition comprising: a coconut shell sourced carbon in from 85 to 95 wt %; a conductive carbon in from 1 to 10 wt %; and a binder in from 3 to 8 wt %; and an electrically conductive substrate, wherein the coconut shell sourced carbon has a disorder (D) peak to graphitic (G) peak intensity ratio by Raman analysis of from 1.40 to 1.85; and by elemental analysis a hydrogen content of from 0.01 to 0.25 wt %; a nitrogen content of from 0.01 to 0.55 wt %; and an oxygen content of from 0.01 to 2 wt %. Also disclosed are methods of making and using the carbon composition.
Abstract:
An encapsulated lithium particle including: a core comprised of at least one of: lithium; a lithium metal alloy; or a combination thereof; and a shell comprised of a lithium salt, an oil, and optionally a binder, and the shell encapsulates the core, and the particle size is from 10 to 500 microns. Also, disclosed is a method of making the particle and using the particle in electrical devices such as a capacitor or a battery.
Abstract:
A method for producing activated carbon includes heating a phenolic novolac resin carbon precursor at a carbonization temperature effective to form a carbon material, and reacting the carbon material with CO2 at an activation temperature effective to form the activated carbon. The resulting activated carbon can be incorporated into a carbon-based electrode of an EDLC. Such EDLC can exhibit a potential window and thus an attendant operating voltage of greater than 3V.
Abstract:
An encapsulated lithium particle including: a core comprised of at least one of: lithium; a lithium metal alloy; or a combination thereof; and a shell comprised of a lithium salt, an oil, and optionally a binder, and the shell encapsulates the core, and the particle size is from 10 to 500 microns. Also, disclosed is a method of making the particle and using the particle in electrical devices such as a capacitor or a battery.
Abstract:
An anode in a lithium ion capacitor, including: a carbon composition comprising: a coconut shell sourced carbon in from 85 to 95 wt %; a conductive carbon in from 1 to 10 wt %; and a binder in from 3 to 8 wt %; and an electrically conductive substrate, wherein the coconut shell sourced carbon has a disorder (D) peak to graphitic (G) peak intensity ratio by Raman analysis of from 1.40 to 1.85; and by elemental analysis a hydrogen content of from 0.01 to 0.25 wt %; a nitrogen content of from 0.01 to 0.55 wt %; and an oxygen content of from 0.01 to 2 wt %. Also disclosed are methods of making and using the carbon composition.