Abstract:
Cellular ceramic articles are manufactured from a green cellular ceramic body that includes a binder material and a plurality of channels. At least one of the channels is coated with a slurry that includes a green coating composition and a solvent to form a coating layer. The binder material is insoluble in the solvent.
Abstract:
A filtration article having a honeycomb filter body that includes a plurality of intersecting porous walls including surfaces that define a plurality of channels extending in a longitudinal direction from an inlet end to an outlet end. The plurality of channels includes inlet channels that are open at the inlet end and sealed at locations longitudinally spaced away from the inlet end, and outlet channels that are open at the outlet end and sealed at locations longitudinally spaced away from the outlet end. Inorganic deposits are disposed on, or in, or both on and in, at least some of the walls. The inorganic deposits are bound to each other, to the walls, or to both, by a silicon-containing precursor binder.
Abstract:
A method for applying a surface treatment to a plugged honeycomb body comprising porous wall includes: mixing particles of an inorganic material with a liquid vehicle and a binder material to form a liquid-particulate-binder stream; mixing the liquid-particulate-binder stream with an atomizing gas, directing the liquid-particulate-binder stream into an atomizing nozzle thereby atomizing the particles into liquid-particulate-binder droplets comprised of the liquid vehicle, the binder material, and the particles; conveying the droplets toward the plugged honeycomb body by a gaseous carrier stream, wherein the gaseous carrier stream comprises a carrier gas and the atomizing gas; evaporating substantially all of the liquid vehicle from the droplets to form agglomerates comprised of the particles and the binder material; depositing the agglomerates onto the porous walls of the plugged honeycomb body; wherein the deposited agglomerates are disposed on, or in, or both on and in, the porous walls.
Abstract:
Filtration articles herein exhibit excellent filtration efficiency and pressure drop before and after water durability testing. The articles comprise: a honeycomb filter body; inorganic deposits disposed within the honeycomb filter body at a loading of less than or equal to 20 grams of the inorganic deposits per liter of the honeycomb filter body. The inorganic deposits are comprised of refractory inorganic nanoparticles bound by a high temperature binder comprising one or more inorganic components. At least a portion of the inorganic deposits form a porous inorganic network over portions of inlet walls of the honeycomb filter body.
Abstract:
A porous ceramic honeycomb body (10) including intersecting walls that form channels (22) extending axially from a first end face to a second end face and layered plugs (62) comprised of a first layer (64) disposed on channel walls and a second layer (66) disposed inward toward an axial center of each respective channel on the first layer. The plugs seal at least one of a first portion of the channels at the first end face and a second portion of channels at the second end face of the porous ceramic honeycomb body.
Abstract:
Coated particulate filters and methods for their manufacture disclosed. The particulate filters comprise a honeycomb body having a plurality of porous channel walls defining channels extending from an inlet end to an outlet end. The honeycomb body has an upstream zone having an upstream zone gas permeability and a downstream zone disposed closer to the outlet end than the upstream zone and having a downstream zone gas permeability. SCR catalyst is present in a loading in the downstream zone at localized loading in a range of from about 50 g/L to about 200 g/L such that the upstream zone gas permeability is in a range of about 5 to about 90 times the downstream zone gas permeability.
Abstract:
A porous ceramic honeycomb body (10) including intersecting walls that form channels (22) extending axially from a first end face to a second end face and layered plugs (62) comprised of a first layer (64) disposed on channel walls and a second layer (66) disposed inward toward an axial center of each respective channel on the first layer. The plugs seal at least one of a first portion of the channels at the first end face and a second portion of channels at the second end face of the porous ceramic honeycomb body.
Abstract:
Methods for applying a surface treatment to a plugged honeycomb body comprising porous wall includes: atomizing particles of an inorganic material into liquid-particulate-binder droplets comprised of an aqueous vehicle, a binder material, and the particles, evaporating substantially all of the aqueous vehicle from the droplets to form agglomerates comprised of the particles and the binder material, and depositing the agglomerates onto the porous walls of the plugged honeycomb body, wherein the agglomerates are disposed on, or in, or both on and in, the porous walls. Plugged honeycomb bodies comprising porous walls and inorganic material deposited thereon are also disclosed.
Abstract:
A coated ceramic honeycomb body comprising a honeycomb structure comprising a matrix of intersecting porous walls forming a plurality of axially-extending channels, at least some of the plurality of axially-extending channels being plugged to form inlet channels and outlet channels, wherein a total surface area of the outlet channels is greater than a total surface area of the inlet channels, and wherein a catalyst is preferentially located within the outlet channels, and preferentially disposed on non-filtration walls of the outlet channels. Methods and apparatus configured to preferentially apply a catalyst-containing slurry to the outlet channels and non-filtration walls are provided, as are other aspects.
Abstract:
Disclosed is a honeycomb support structure comprising a honeycomb body and an outer layer or skin formed of a cement that includes an inorganic filler material having a first coefficient of thermal expansion from 25 C to 600 C and a crystalline inorganic fibrous material having a second coefficient of thermal expansion from 25 C to 600 C. Skin cement composition controls level of cement liquid/colloid components, for example water, colloidal silica, and methylcellulose migration into the substrate during the skin application process to form barrier to skin wetting and staining during the washcoating process.