Abstract:
The present disclosure is directed to an antimicrobial composite material, and more particularly to an antimicrobial composite material comprising particles having a metal or metal alloy core and a porous inorganic material shell, coatings including the antimicrobial composite material, and methods of making the same. In some embodiments, Cu—SiO2 core-shell particles are disclosed in which the Cu core provides antimicrobial activity and the porous SiO2 shell functions as a barrier for the Cu core, thus preventing the Cu core from being directly exposed to air or moisture.
Abstract:
An article and method of manufacturing an article is provided. The article includes a glass, glass-ceramic, or ceramic substrate having a primary surface with an anti-reflective coating disposed over the primary surface. An intermediate coating containing a cured polysilazane or a cured silsesquioxane material is disposed over the anti-reflective coating. An easy-to-clean (ETC) coating containing a polymer and/or fluorinated material is disposed directly on the intermediate coating. The method of manufacturing the article includes curing an intermediate coating solution containing a polysilazane or a silsesquioxane to form an intermediate coating at a temperature of about 300° C. or less.
Abstract:
A bioactive borate glass composition including, for example: 30 to 60% B2O3; 0.5 to 20% ZrO2; 3 to 30% Na2O; 0.1 to 15% K2O; 0.1 to 15% MgO; 5 to 30% CaO; and 1 to 5% P2O5 in mole percents based on 100 mol % of the total composition. Also disclosed is a method of making and method of using the compositions and the bioactive borate glass dentin treatment formulations.
Abstract:
Cross-linked shear-thinning fluids of pectic acid demonstrating increased viscosity with decreasing shear, as well as methods of producing and using the same. A shear-thinning fluid includes an aqueous solution of pectic acid cross-linked by a divalent cation is disclosed. The pectic acid may be present in an amount ranging from about 0.5 to about 3.0% (w/v), the divalent cation may be present at a concentration of from about 0.5 mM to about 7.0 mM, and the viscosity of the shear-thinning fluid increases with decreasing shear. These cross-linked shear-thinning fluids of pectic acid can be utilized for controlled release formulations, cell encapsulation, and 3D printing, and provide for an improved balance between structure fidelity/mechanical stability and cell viability.
Abstract:
An air filter article, including: a wall-flow honeycomb particulate filter; and at least one anti-microbial agent on at least a portion of the interior surfaces. The disclosure also provides a filtration system that incorporates or uses the air filter article, and methods for making the air filter article.
Abstract:
An exfoliant composition including: a microbead comprising a core and a shell: the core comprising an abrasive particle having an average particle size of from 50 to 1,000 microns; and the shell comprising a hydrogel. Also disclosed is a method of making the exfoliant composition and a method of using the exfoliant composition.
Abstract:
An air filter article, including: a wall-flow honeycomb particulate filter; and at least one anti-microbial agent on at least a portion of the interior surfaces. The disclosure also provides a filtration system that incorporates or uses the air filter article, and methods for making the air filter article.
Abstract:
A method that includes the steps: inoculating nutrient agar with bacterial stock to form a culture; incubating the culture to form a first incubated culture; incubating a portion of the first culture with nutrient agar to form a second culture; incubating a portion of the second culture to form a third culture; incubating the third culture to form an inoculated test plate; forming an inoculum by suspending bacteria from the inoculated test plate in a buffered test solution, adjusting the pH to ˜7 to 8, and adding organic soil at a concentration of approximately 10% to 30% by weight; inoculating a silver-containing surface region of a test carrier with a portion of the inoculum; incubating the inoculated test carrier; washing the test carrier in a neutralizing solution to form a residual test inoculum; and calculating the percent reduction in the number of surviving bacterial colonies in the residual test inoculum.
Abstract:
Described herein are coated glass or glass-ceramic articles having improved antimicrobial efficacy. Further described are methods of making and using the improved articles. The coated articles generally include a glass or glass-ceramic substrate and an antimicrobial coating disposed thereon. The antimicrobial coating is not a free-standing adhesive film, but a coating that is formed on or over at least a portion of a surface of the glass or glass-ceramic substrate.
Abstract:
An antimicrobial article having a substrate, and a coating on a surface of the substrate. The coating includes a silver-containing alkali silicate. The antimicrobial article has an antimicrobial efficacy of greater than or equal to about 90.0% according to EPA Test Method for Efficacy of Copper Alloy Surfaces as a Sanitizer. The coating may further include at least one of a boron-containing compound and an aluminum-containing compound. A method for forming antimicrobial articles includes coating a substrate with a mixture comprising an alkali silicate; curing the coating at a temperature from greater than or equal to about 300° C. to less than or equal to about 620° C. for a duration of greater than or equal to about 15 minutes to less than or equal to about 120 minutes; and contacting the coating with an antimicrobial medium comprising silver nitrate and an alkali nitrate.