Abstract:
A MLU cell for sensing an external magnetic field, including a magnetic tunnel junction including a sense layer having a sense magnetization adapted to be oriented by the external magnetic field; a reference layer having a reference magnetization; a tunnel barrier layer; a biasing layer having a biasing magnetization and a biasing antiferromagnetic layer pinning the biasing magnetization substantially parallel to the pinned reference magnetization at a low threshold temperature and freeing it at a high threshold temperature. A biasing coupling layer is between the sense layer and the basing layer and configured for magnetically coupling the biasing layer and the sense layer such that the sense magnetization is oriented substantially perpendicular to the pinned biasing magnetization and to the pinned reference magnetization. The present disclosure further concerns a magnetic sensor device for sensing an external magnetic field, including a plurality of the MLU cells.
Abstract:
A magnetoresistive element including: a storage layer having a first storage magnetostriction; a sense layer having a first sense magnetostriction; and a barrier layer between and in contact with the storage and sense layer. The magnetoresistive element also includes a compensating ferromagnetic layer having a second magnetostriction different from the first storage magnetostriction and/or sense magnetostriction, and adapted to compensate the first storage magnetostriction and/or the first sense magnetostriction so that a net magnetostriction of the storage layer and/or sense layer is adjustable between −10 ppm and +10 ppm or more negative than −10 ppm by adjusting a thickness of the compensating ferromagnetic layer. The present disclosure also concerns a magnetic device comprising the magnetoresistive element.
Abstract:
Magnetic element including a first magnetic layer having a first magnetization; a second magnetic layer having a second magnetization; a tunnel barrier layer between the first and the second magnetic layers; and an antiferromagnetic layer exchanged coupling the second magnetic layer such that the second magnetization is pinned below a critical temperature of the antiferromagnetic layer, and can be freely varied when the antiferromagnetic layer is heated above that critical temperature. The magnetic element also includes an oxygen gettering layer between the second magnetic layer and the antiferromagnetic layer, or within the second magnetic layer. The magnetic element has reduced insertion of oxygen atoms in the antiferromagnetic layer and possibly reduced diffusion of manganese in the second magnetic layer resulting in an enhanced exchange bias and/or enhanced resistance to temperature cycles and improved life-time.
Abstract:
A magnetic logic unit (MLU) cell for sensing magnetic fields, including: a magnetic tunnel junction including a storage layer having a storage magnetization, a sense layer having a sense magnetization; a tunnel barrier layer between the storage layer and the sense layer; and a pinning layer pinning the storage magnetization at a low threshold temperature and freeing it at a high threshold temperature. The sense magnetization is freely alignable at the low and high threshold temperatures and the storage layer induces an exchange bias field magnetically coupling the sense layer such that the sense magnetization tends to be aligned antiparallel or parallel to the storage magnetization. The tunnel barrier layer is configured for generating an indirect exchange coupling between the tunnel barrier layer and the sense layer providing an additional exchange bias field.
Abstract:
A mechanism is provided for a thermally assisted magnetoresistive random access memory device (TAS-MRAM) with reduced power for reading and writing. A tunnel barrier is disposed adjacent to a ferromagnetic sense layer and a ferromagnetic storage layer, such that the tunnel barrier is sandwiched between the ferromagnetic sense layer and the ferromagnetic storage layer. An antiferromagnetic pinning layer is disposed adjacent to the ferromagnetic storage layer. The pinning layer pins a magnetic moment of the storage layer until heating is applied. The storage layer includes a non-magnetic material to reduce a storage layer magnetization as compared to not having the non-magnetic material. The sense layer includes the non-magnetic material to reduce a sense layer magnetization as compared to not having the non-magnetic material. A reduction in the storage layer magnetization and sense layer magnetization reduces the magnetostatic interaction between the storage layer and sense layer, resulting in less read/write power.
Abstract:
A magnetic sensor cell includes a magnetic tunnel junction including a reference layer having a reference magnetization oriented parallel to the plane of the reference layer, a sense layer having a sense magnetization, and a tunnel barrier layer between the sense and reference layers. A magnetic device is configured for providing a sense magnetic field for aligning the sense magnetization. The sense layer magnetization is orientable between a direction parallel to the plane of the sense layer and a direction perpendicular to the plane of the sense layer when the sense magnetic field is provided. The magnetic sensor cell can be used for sensing an external magnetic field including a component oriented parallel to the plane of the sense layer and a component oriented perpendicular to the plane of the sense layer.
Abstract:
MRAM cell including a magnetic tunnel junction including a reference layer, a storage layer having a storage magnetization, a tunnel barrier layer between the reference and the storage layers; and an antiferromagnetic layer exchange-coupling the storage layer such as to pin the storage magnetization at a low temperature threshold and free it at a high temperature threshold. The storage layer includes a first ferromagnetic layer in contact with the tunnel barrier layer, a second ferromagnetic layer in contact with the antiferromagnetic layer, and a low saturation magnetization storage layer including a ferromagnetic material and a non-magnetic material. The MRAM cell can be written with improved reliability.
Abstract:
Magnetic element including a first magnetic layer having a first magnetization; a second magnetic layer having a second magnetization; a tunnel barrier layer between the first and the second magnetic layers; and an antiferromagnetic layer exchanged coupling the second magnetic layer such that the second magnetization is pinned below a critical temperature of the antiferromagnetic layer, and can be freely varied when the antiferromagnetic layer is heated above that critical temperature. The magnetic element also includes an oxygen gettering layer between the second magnetic layer and the antiferromagnetic layer, or within the second magnetic layer. The magnetic element has reduced insertion of oxygen atoms in the antiferromagnetic layer and possibly reduced diffusion of manganese in the second magnetic layer resulting in an enhanced exchange bias and/or enhanced resistance to temperature cycles and improved life-time.