摘要:
MRAM cell including a magnetic tunnel junction including a reference layer, a storage layer having a storage magnetization, a tunnel barrier layer between the reference and the storage layers; and an antiferromagnetic layer exchange-coupling the storage layer such as to pin the storage magnetization at a low temperature threshold and free it at a high temperature threshold. The storage layer includes a first ferromagnetic layer in contact with the tunnel barrier layer, a second ferromagnetic layer in contact with the antiferromagnetic layer, and a low saturation magnetization storage layer including a ferromagnetic material and a non-magnetic material. The MRAM cell can be written with improved reliability.
摘要:
A magnetic logic unit (MLU) cell includes a first magnetic tunnel junction and a second magnetic tunnel junction, each magnetic tunnel junction including a first magnetic layer having a first magnetization, a second magnetic layer having a second magnetization, and a tunnel barrier layer between the first and second layer. A field line for passing a field current such as to generate an external magnetic field is adapted to switch the first magnetization. The first magnetic layer is arranged such that the magnetic tunnel junction magnetization varies linearly with the generated external magnetic field. An MLU amplifier includes a plurality of the MLU cells. The MLU amplifier has large gains, extended cut off frequencies and improved linearity.
摘要:
The present disclosure concerns a method for writing to a self-referenced MRAM cell comprising a magnetic tunnel junction comprising: a storage layer including a first ferromagnetic layer having a first storage magnetization, a second ferromagnetic layer having a second storage magnetization, and a non-magnetic coupling layer separating the first and second ferromagnetic layers; a sense layer having a free sense magnetization; and a tunnel barrier layer included between the sense and storage layers; the first and second ferromagnetic layers being arranged such that a dipolar coupling between the storage) and the sense layers is substantially null; the method comprising: switching the second ferromagnetic magnetization by passing a spin-polarized current in the magnetic tunnel junction; wherein the spin-polarized current is polarized when passing in the sense layer, in accordance with the direction of the sense magnetization. The MRAM cell can be written with low power consumption.
摘要:
The present disclosure concerns a method for writing to a self-referenced MRAM cell comprising a magnetic tunnel junction comprising: a storage layer including a first ferromagnetic layer having a first storage magnetization, a second ferromagnetic layer having a second storage magnetization, and a non-magnetic coupling layer separating the first and second ferromagnetic layers; a sense layer having a free sense magnetization; and a tunnel barrier layer included between the sense and storage layers; the first and second ferromagnetic layers being arranged such that a dipolar coupling between the storage) and the sense layers is substantially null; the method comprising: switching the second ferromagnetic magnetization by passing a spin-polarized current in the magnetic tunnel junction; wherein the spin-polarized current is polarized when passing in the sense layer, in accordance with the direction of the sense magnetization. The MRAM cell can be written with low power consumption.
摘要:
MRAM element having a magnetic tunnel junction including a reference layer, a storage layer, a tunnel barrier layer between the reference and storage layers, and a storage antiferromagnetic layer. The storage antiferromagnetic layer has a first function of exchange-coupling a storage magnetization of the storage layer and a second function of heating the magnetic tunnel junction when a heating current in passed in the magnetic tunnel junction. The MRAM element has better data retention and low writing temperature.
摘要:
A magnetic logic unit (MLU) cell includes a first and second magnetic tunnel junction, each including a first magnetic layer having a first magnetization, a second magnetic layer having a second magnetization, and a barrier layer; and a field line for passing a field current such as to generate an external magnetic field adapted to adjust the first magnetization. The first and second magnetic layers and the barrier layer are arranged such that the first magnetization is magnetically coupled antiparallel with the second magnetization through the barrier layer. The MLU cell also includes a biasing device arranged for applying a static biasing magnetic field oriented substantially parallel to the external magnetic field such as to orient the first magnetization at about 90° relative to the second magnetization, the first and second magnetizations being oriented symmetrically relative to the direction of the external magnetic field.
摘要:
MRAM cell comprising a magnetic tunnel junction comprising a storage layer having a net storage magnetization being adjustable when the magnetic tunnel junction is at a high temperature threshold and being pinned at a low temperature threshold; a sense layer having a reversible sense magnetization; and a tunnel barrier layer between the sense and storage layers; at least one of the storage and sense layer comprising a ferrimagnetic 3d-4f amorphous alloy material comprising a sub-lattice of 3d transition metals atoms providing a first magnetization and a sub-lattice of 4f rare-earth atoms providing a second magnetization, such that at a compensation temperature of said at least one of the storage layer and the sense layer, the first magnetization and the second magnetization are substantially equal. The disclosed MRAM cell can be written and read using a small writing and reading field, respectively.
摘要:
A magnetic logic unit (MLU) cell includes a first and second magnetic tunnel junction, each including a first magnetic layer having a first magnetization, a second magnetic layer having a second magnetization, and a barrier layer; and a field line for passing a field current such as to generate an external magnetic field adapted to adjust the first magnetization. The first and second magnetic layers and the barrier layer are arranged such that the first magnetization is magnetically coupled antiparallel with the second magnetization through the barrier layer. The MLU cell also includes a biasing device arranged for applying a static biasing magnetic field oriented substantially parallel to the external magnetic field such as to orient the first magnetization at about 90° relative to the second magnetization, the first and second magnetizations being oriented symmetrically relative to the direction of the external magnetic field.
摘要:
The present disclosure concerns a MRAM element comprising a magnetic tunnel junction comprising: a storage layer, a sense layer, and a tunnel barrier layer included between the storage layer and the sense layer; the storage layer comprising a first magnetic layer having a first storage magnetization; a second magnetic layer having a second storage magnetization; and a non-magnetic coupling layer separating the first and second magnetic layers such that the first storage magnetization is substantially antiparallel to the second storage magnetization; the first and second magnetic layers being arranged such that: at a read temperature the first storage magnetization is substantially equal to the second storage magnetization; and at a write temperature which is higher than the read temperature the second storage magnetization is larger than the first storage magnetization. The disclosed MRAM element generates a low stray field when the magnetic tunnel junction is cooled at a low temperature.
摘要:
The present disclosure concerns a method for writing to a MRAM cell comprising a magnetic tunnel junction formed from a storage layer having a storage magnetization; a reference layer having a reference magnetization; and a tunnel barrier layer included between the sense and storage layers; and a current line electrically connected to said magnetic tunnel junction; the method comprising: passing a heating current in the magnetic tunnel junction for heating the magnetic tunnel junction; passing a field current for switching the storage magnetization in a written direction in accordance with the polarity of the field current. The magnitude of the heating current is such that it acts as a spin polarized current and can adjust the storage magnetization; and the polarity of the heating current is such as to adjust the storage magnetization substantially towards said written direction.