Abstract:
The present invention is directed to derivatized corroles, methods of making and using the same as imaging and therapeutic agents. In certain embodiments, the corroles are compounds having a Structure (I-H) and (I-M): where R1, R2, R3, and R4 are independently —F or —N(H)—(CH2)m—Y, provided that at least one of R1, R2, R3, and R4 is —N(H)—(CH2)m—Y, and m and Y are described herein.
Abstract:
In an aspect, a redox flow battery comprises a catholyte and an anolyte; wherein at least one of said catholyte and said anolyte is a metal-coordination complex, said metal-coordination complex comprising: (i) a metal; (ii) one or more first ligands coordinated with said metal atom, wherein each of said first ligands is independently a Lewis basic ligand; and one or more second ligands associated with said one or more first ligands, wherein each of said second ligands is independently a Lewis acid ligand; and a nonaqueous solvent, wherein said catholyte, said anolyte or both are dissolved in said nonaqueous solvent. One or more first ligands may be provided in a primary coordination sphere of said metal-coordination complex and one or more second ligands may be provided in a secondary coordination sphere of said metal-coordination complex. The one or more first ligands independently may comprise a Lewis basic functional group and each of said one or more second ligands independently may comprise a Lewis acidic functional group.
Abstract:
Methods and compositions modulate the activity of electrically excitable cells. Photovoltaic compounds which, upon exposure to light energy, increase or decrease the electrical activity of cells. These supplement and/or replace of vision based on the conversion of light energy to electrical energy within certain cells of the visual system. A “patch” or bridge to circumvent one or more defective, damaged, or diseased cells in the visual system. Additionally, in several embodiments, subjects with normal vision can benefit from the methods, compositions, systems, and/or devices disclosed herein as normal visual acuity can be heightened. The exposure induces an energy (e.g., a receipt of light energy, conversion to electrical energy, and passage of that electrical energy) from the photovoltaic compound to the cell, thereby altering the transmembrane potential of the cell and/or the opening of one or more ion channels, thereby modulating the activity of the electrically excitable cell.