Abstract:
A control system for a switched reluctance (SR) machine having a rotor and a stator is provided. The control system may include a converter circuit in electrical communication between the stator and a common bus, and a controller configured to monitor a bus voltage of the converter circuit and a phase current of the SR machine. The controller may be configured to determine a phase voltage based on one or more of main pulses and any diagnostic pulses, determine an estimated flux based on the phase voltage and an associated mutual voltage, determine a rotor position based at least partially on the estimated flux, and control the SR machine based on the rotor position and a desired torque.
Abstract:
A method for determining rotor position of a switched reluctance (SR) machine having a rotor and a stator is provided. The method may include injecting a test pulse into one or more idle phases of the SR machine, determining a decoupled flux value based at least partially on a total flux value corresponding to the test pulse and a mutual flux value, and determining the rotor position based at least partially on the decoupled flux value.
Abstract:
A method of controlling a motor is provided. The method may determine one of a switching period, a fundamental cycle, and a current target per phase leg of the motor having at least one high voltage transition point; determine a dwell period to be enforced at the transition point between an engagement of a first switch of the phase leg and an engagement of a second switch of the phase leg where each of the first switch and the second switch may be selectively engageable between a first state and a second state; engage the first switch from the first state to the second state at the transition point; and engage the second switch from the first state to the second state after the transition point and upon expiration of the dwell period.
Abstract:
A method of estimating an initial rotor position of a switched reluctance (SR) machine having a rotor and a stator is provided. The method may comprise the steps of driving a phase current in each of a plurality of phases of the SR machine to a predefined limit, performing an integration of a common bus voltage associated with each phase, determining a flux value for each phase based on the integrations, and determining the initial rotor position based on the flux values.
Abstract:
A control system that includes a converter circuit and a control device is disclosed. The converter circuit may be configured to control a phase current of a switched reluctance machine. The control device may be configured to determine an estimated flux based on a bus voltage, a phase voltage, and a mutual voltage. The control device may be configured to determine a flux threshold based on the phase current, and determine a first limit and a second limit relative to the flux threshold. The first limit and the second limit may be scaled relative to the flux threshold based on one or more of the target speed, the load demand, or the bus voltage. The control device may be configured to compare the estimated flux with the first limit, and reset the estimated flux to the second limit based on determining that the estimated flux satisfies the first limit.
Abstract:
A control system for a switched reluctance (SR) machine is disclosed. The SR machine may have a rotor and a stator. The control system may have a converter circuit operatively coupled to the stator and including a plurality of gates in selective communication with each phase of the stator, and a controller in communication with each of the stator and the converter circuit. The controller may be configured to command a fixed dwell of a theta-on angle and a theta-off angle and a varying current command to the plurality of gates when the SR machine is in a continuous conduction mode.
Abstract:
A method of controlling an electric motor may include determining a desired torque at the electric motor. A current at a first phase of the electric motor may be calculated at a controller. The calculated current may be a current that results in supplying the desired torque at the electric motor. The controller may compare the calculated current to a predetermined threshold current, and when the calculated current is greater than the predetermined threshold current, the controller may reduce the calculated current to the predetermined threshold current and adjust a current in a second phase adjacent to the first phase of the electric motor to continue to supply the desired torque at the electric motor.
Abstract:
A control system for a generator of an electric drive is provided. The control system may include a converter circuit configured to communicate with one or more phases of a stator of the generator, and a controller in communication with the converter circuit and an engine associated with the electric drive. The controller may be configured to determine an operational state of the electric drive based on at least engine speed, and engage one of a map-lookup control scheme and a fixed-theta off control scheme for operating the generator based on the operational state of the electric drive.
Abstract:
An electrical inverter may include a plurality of phase modules to provide a plurality of phase outputs. Two or more of the plurality of phase modules may share a common insulated-gate bipolar transistor.
Abstract:
A system and method for estimating a position and a speed of a rotor of a Switched Reluctance (SR) machine is provided. The SR machine comprises the rotor, a stator and at least one winding. The method includes generating a diagnostic pulse having a trapezoidal shape. The method further includes injecting a diagnostic pulse into the at least one winding of the SR machine. The method further includes measuring an actual stator current flowing through the at least one winding of the SR machine. The method further includes computing an estimated stator current flowing through the at least one winding using observer-based estimation technique. The estimated stator current is compared with the actual stator current to compute an error signal. At least one of the position and the speed of the rotor is estimated based on the error signal.