Abstract:
A vehicle jack including a top table fixed to the bottom side of a motor vehicle, a control unit mounted on the top table, the control unit having a rotation control lever, a lifting control lever, and an extension control lever, a power unit, which includes a battery, a motor connected to the battery, an oil tank, a hydraulic oil loop, and a pump driven by the motor to pump hydraulic oil out of the oil tank into the hydraulic oil loop, a base table revolvably coupled to the top table, the base table having a driven gear fastened to the top table, a driving gear meshed with the driven gear and driven by the rotation control lever through a motor pump being coupled to the hydraulic oil loop, and three stands equiangularly pivoted to the base table, each stand having two opposite reciprocating parts reciprocated by hydraulic oil from the hydraulic oil loop through the control of the lifting control lever and extension control lever of the control unit.
Abstract:
A power supply control circuit used to control a power supply to supply a MCU includes a first transistor switch, a RC circuit, a power switch control circuit, and an input signal control circuit. When the power switch control circuit is grounded via the MCU, the RC circuit is discharged to ground and the first transistor switch is switched on, such that the power supply supplies power to the MCU. When the MCU outputs a control signal to the input signal control circuit, the RC circuit is discharged to ground and the first transistor switch is switched on, such that the power supply supplies power to the MCU. When the MCU stops outputting the control signal to the input signal control circuit, the RC circuit is charged and the first transistor switch is switched off, such that the power supply does not supply power to the MCU.
Abstract:
A backlight protection circuit includes a driving circuit, two lamps, a pulse modulator, and a feedback circuit. The pulse modulator controlling the operating state of the driving circuit includes an over-voltage sampling end. Each of the two lamps includes a high voltage end connected to the driving circuit, and a low voltage end connected to the over-voltage sampling end through the feedback circuit. The pulse modulator stops the operation of the driving circuit when the voltage of the low voltage end exceeds a reference voltage.
Abstract:
An extensible switching power circuit includes a plurality of switching power modules and a plurality of synchronous signal generators. Every two adjacent switching power modules are connected through a synchronous signal generator. The switching power modules generate induction electric potentials. Each synchronous pulse generator measures relevant electric potentials of the previous switching power module connected thereto and generates corresponding synchronous signals sent to the subsequent switching power module connected thereto. The subsequent switching power module regulates the phase of its induction electric potential according to the synchronous signals, such that the induction electric potentials of the two adjacent switching power modules compensate each other's energy gaps.
Abstract:
An power supply circuit includes at least one voltage converting circuit, a plurality of output branches, and a plurality of power assigning elements. The at least one voltage converting circuit is configured for converting a primary voltage signal to at least one alternating current (AC) voltage signal. Each of the output branches is configured for providing a direct current (DC) power supply to a respective load circuit based on the at least one AC voltage signal. The power assigning elements are configured to reassign the DC power supplies provided by the output branches to the load circuits.
Abstract:
A semiconductor device, including a memory cell having a control gate, a source and drain; and a current limiting circuit coupled to the source. The current limiting circuit may be configured to limit a current between the drain and source to not exceed a predetermined value; the current being generated in response to application of first and second voltages to the control gate and drain, respectively. The current limiting circuit may include a transistor comprising a first terminal, a second terminal, and a third terminal, wherein the first terminal may include a source of the transistor, the third terminal may include a drain of the transistor, and the second terminal may include a gate of the transistor, and wherein a stable bias may be applied to the second terminal of the transistor.
Abstract:
A serial peripheral flash memory device uses a plurality of dummy input/output terminals to enable the selection of a parallel mode for devices that have a slower serial clock speed. In parallel mode, data is transmitted over the plurality of dummy input/output terminals to allow a plurality of bits to be transmitted at the same time improving the data transmission rate at the slower serial clock speed.
Abstract:
The present invention relates to a backlight module, wherein by disposing buffer elements in the edges and/or below the plate lamp, the plate lamp of the backlight module can avoid the damage resulting from an external force. In addition to a vibration-resistant effect, the buffer elements disposed below the bottom of the plate lamp can further maintain a uniform spacing between the plate lamp and the rear frame so that the light-emitting efficiency, brightness uniformity, and operation can be maintained.