Abstract:
An exemplary power supply circuit configured for supply power for a load includes: a main power supply configured for converting received voltages into required direct current voltages; a microprocessor configured for providing control signals; a stand-by control circuit configured for controlling the main power supply; an energy storage circuit configured for supplying the stand-by control circuit. When the load stops operating, the microprocessor outputs a control signal to the stand-by control circuit, the stand-by control circuit outputs a corresponding control signal to turn off the main power supply. In response to when the load starts operating, the stand-by control circuit outputs a corresponding control signal to turn on the main power supply, and the main power supply charges the energy storage circuit.
Abstract:
An electrostatic discharge protection circuit includes an input terminal, a first diode, a second diode, a third diode, a fourth diode, a plurality of voltage stabilizer circuits, and a power terminal. The input terminal and the cathode of the second diode connect to the anode of the first diode; the voltage stabilizer circuits connect in parallel between the cathode of the first diode and the anode of the second diode. The power terminal connects to the anode of the third diode, the cathode of the third diode connects to the cathode of the first diode. The cathode of the fourth diode connects to ground, the anode of the fourth diode connects to the anode of the second diode.
Abstract:
An embodiment of the invention provides a memory array including a plurality of bit lines, a plurality of memory cells and a device. Each of the plurality of memory cells has a first node, a second node and a third node, wherein the third node is coupled to one of the plurality of bit lines. The device couples the plurality of bit lines together to form a common node for one of the plurality of memory cells.
Abstract:
A NROM memory device includes an array of memory cells and first and second bit lines. The first and second bit lines are coupled to opposite sides of the memory cells. During an erase operation, one of the sides of the memory cells receives a positive voltage and the other side couples to a common node or a limited current source. Methods are also disclosed that can easily screen for marginal memory cells based on a threshold voltage distribution of the memory cells.
Abstract:
An exemplary power supply circuit configured for supply power for a load includes: a main power supply configured for converting received voltages into required direct current voltages; a microprocessor configured for providing control signals; a stand-by control circuit configured for controlling the main power supply; an energy storage circuit configured for supplying the stand-by control circuit. When the load stops operating, the microprocessor outputs a control signal to the stand-by control circuit, the stand-by control circuit outputs a corresponding control signal to turn off the main power supply. In response to when the load starts operating, the stand-by control circuit outputs a corresponding control signal to turn on the main power supply, and the main power supply charges the energy storage circuit.
Abstract:
A virtual ground nitride read-only memory array has a matrix of nitride read-only memory cells in which during an erase operation the non-erasing side of nitride read-only memory cells are connected to a common node for enhancing the erase uniformity of the nitride read-only memory array. If an operation requests erasing on the left side of nitride read-only memory cells, a positive voltage is supplied from an internal power supply to the left side for each of the nitride read-only memory cells, and the right side for each of the nitride read-only memory cells is discharged to a common node. The voltage level of the common mode is selected to be sufficiently high in order to prevent from punch through while at the same time sufficiently low to maintain the lateral electric field for erase operation to function optimally.
Abstract:
In accordance with one embodiment of the invention, a memory device comprises an array of memory cells arranged into word lines and bit lines, with a sense amplifier and a plurality of reference cells for each bit line. The sense amplifier for a bit line compares the output of a memory cell for that bit line with the output of one of the plurality of reference cells for that bit line.
Abstract:
A memory device is disclosed that includes a plurality of word lines and a plurality of memory cells operating in one of a plurality of modes and coupled to at least one of the word lines. The memory device also includes a plurality of reference lines and reference cells. Each reference cell corresponds to one of the operating modes, supplies a reference current for the corresponding mode, and is coupled to at least one of the reference lines. A reference cell current from a reference cell can also be compared to a target range and, if outside the target range, the voltage level on a corresponding referece line can be adjusted accordingly such that the reference current falls within the target range (i.e., reference current trimming).
Abstract:
A method for removing a photoresist layer from a semiconductor substrate following a conventional dry etching step. A first wet chemical treatment strips the photoresist. A second dry ash with oxygen plasma completes the photoresist removal. To assure complete removal of photoresist imbedded on or within the material underlying the photoresist film, the semiconductor substrate is preheat treated to a temperature in the range of 150 to 250 degrees Centigrade to release the photoresist prior to the second dry ash with oxygen plasma operation. In particular, this method eliminates photoresist extrusion defects from occurring during a bond pad alloy operation.
Abstract:
An electronic device connected with numerous first load medias and numerous second load medias. The electronic device comprises a processor and a switch module. The processor is capable of switching between a first working mode and a second working mode. Under the second working mode, the processor generates a second control signal, the switch mode establishes independent electronic connections between a specified first load media and all of the second load medias, thus, the specified first load media simultaneously connects and communicates with all of the second load medias.