Abstract:
A pixel structure including a gate, a gate dielectric layer, a patterned semiconductor layer having a channel area disposed above the gate, a patterned dielectric layer having an etching-stop layer disposed above the gate and a number of bumps, a patterned metal layer having a reflective pixel electrode, a source and a drain, an overcoat dielectric layer, and a transparent pixel electrode sequentially disposed on a substrate is provided. The source and the drain respectively cover portions of the channel area. The reflective pixel electrode connects the drain and covers the bumps to form an uneven surface. The overcoat dielectric layer disposed on a transistor constituted by the gate, the gate dielectric layer, the patterned semiconductor layer, the source and the drain has a contact opening exposing a portion of the reflective pixel electrode. The transparent pixel electrode is electrically connected to the reflective pixel electrode through the contact opening.
Abstract:
A method for producing a light reflecting structure in a transflective or reflective liquid crystal display uses one or two masks for masking a photoresist layer in a back-side exposing process. The pattern on the masks is designed to produce rod-like structures or crevices and holes on exposed and developed photoresist layer. After the exposed photoresist is developed, a heat treatment process or a UV curing process is used to soften the photoresist layer so that the reshaped surface is more or less contiguous but uneven. A reflective coating is then deposited on the uneven surface. One or more intermediate layers can be made between the masks, between the lower mask and the substrate, and between the upper masks and the photoresist layers. The masks and the intermediate layers can be made in conjunction with the fabrication of the liquid crystal display panel.
Abstract:
A pixel structure including a gate, a gate dielectric layer, a patterned semiconductor layer having a channel area disposed above the gate, a patterned dielectric layer having an etching-stop layer disposed above the gate and a number of bumps, a patterned metal layer having a reflective pixel electrode, a source and a drain, an overcoat dielectric layer, and a transparent pixel electrode sequentially disposed on a substrate is provided. The source and the drain respectively cover portions of the channel area. The reflective pixel electrode connects the drain and covers the bumps to form an uneven surface. The overcoat dielectric layer disposed on a transistor constituted by the gate, the gate dielectric layer, the patterned semiconductor layer, the source and the drain has a contact opening exposing a portion of the reflective pixel electrode. The transparent pixel electrode is electrically connected to the reflective pixel electrode through the contact opening.
Abstract:
A pixel structure and a manufacturing method thereof are provided. The pixel structure includes a substrate, a scan line, a data line, a first insulating layer, an active device, a second insulating layer, a common electrode and a first pixel electrode. The data line crossed to the scan line is disposed on the substrate and includes a linear transmitting part and a cross-line transmitting part. The first insulating layer covering the scan line and the linear transmitting part is disposed between the scan line and the cross-line transmitting part. The active device, including a gate, an oxide channel, a source and a drain, is connected to the scan line and the data line. The second insulating layer is disposed on the oxide channel and the linear transmitting part. The common electrode is disposed above the linear transmitting part. The first pixel electrode is connected to the drain.
Abstract:
A pixel structure includes a scan line, a data line, an active element, a first passivation layer, a second passivation layer and a pixel electrode. The data line includes a first data metal segment and a second data metal layer. The active element includes a gate electrode, an insulating layer, a channel layer, a source and a drain. The channel layer is positioned on the insulating layer above the gate electrode. The source and the drain are positioned on the channel layer. The source is coupled to the data line. The first passivation layer and the second passivation layer cover the active element and form a first contact hole to expose a part of the drain. The second passivation layer covers a part edge of the drain. The pixel electrode is disposed across the second passivation layer and coupled to the drain via the first contact hole.
Abstract:
A reflective type touch-sensing display panel including a front substrate, scan lines, data lines, pixel structures, photo-sensors, readout devices, a rear substrate and a reflective display medium is provided. The front substrate has an inner surface. The scan lines and the data lines are on the inner surface of the front substrate and intersected to each other. The pixel structures are disposed on the inner surface of the front substrate, and each pixel structure is electrically connected to one of the scan lines and one of the data lines correspondingly. The photo-sensors are disposed on the inner surface of the front substrate. Each readout device is electrically connected to one of the photo-sensor correspondingly. The rear substrate is disposed opposite to the front substrate. The reflective display medium is sealed between the front substrate and the rear substrate.
Abstract:
This invention in one aspect relates to a pixel structure. In one embodiment, the pixel structure includes a scan line formed on a substrate and a data line formed over the substrate defining a pixel area, a switch formed inside the pixel area on the substrate, a shielding electrode having a first portion and a second portion extending from the first portion, and formed over the scan line, the data line and the switch, where the first portion is overlapped with the switch and the second portion is overlapped with the data line, and a pixel electrode having a first portion and a second portion extending from the first portion, and formed over the shielding electrode in the pixel area, where the first portion is overlapped with the first portion of the shielding electrode so as to define a storage capacitor therebetween and the second portion has no overlapping with the second portion of the shielding electrode.
Abstract:
An electrophoresis display pixel including an electrophoresis display film, a substrate, a first active device, a second active device, a first electrode, and a second electrode is provided. The substrate is disposed on the electrophoresis display film, and the substrate has a transparent region and a non-transparent region. The first active device and the second active device are disposed on the substrate and located in the non-transparent region. The first electrode is disposed on the substrate, located in the transparent region, and electrically connected to the first active device. The second electrode is disposed on the substrate, located in the non-transparent region, and electrically connected to the second active device. A light passes through the transparent region and enters the electrophoresis display film to be displayed. A display apparatus including the abovementioned electrophoresis display pixel is also provided.
Abstract:
An active matrix substrate including a substrate, a plurality of scan lines, a plurality of data lines and a plurality of sub-pixels is provided. The scan lines and the data lines are disposed on the substrate, and define a plurality of sub-pixel regions distributed in a delta arrangement. The sub-pixels corresponding to the sub-pixel regions are disposed on the substrate. The sub-pixels are electrically connected with corresponding scan lines and corresponding data lines. Between two sub-pixel regions corresponding to any two adjacent sub-pixels at a same side of one scan line, there are two data lines. Each sub-pixel includes an active device and a pixel electrode. The active device is electrically connected with a corresponding scan line and a corresponding data line. The pixel electrode is electrically connected with the active device, and extends from the sub-pixel region corresponding to the sub-pixel to a position over the data line.
Abstract:
A pixel structure of a liquid crystal display panel and the method thereof is provided. The gate electrode and data line of the pixel structure are formed by a first patterned conductive layer, the scan line is formed by a second patterned conductive layer, and the common electrode and the pixel electrode are formed on a substrate. The common electrode, the pixel electrode, and the insulating layer disposed therebetween compose a storage capacitor. Also, the pixel or the common electrode has a slit structure.