Minimizing total harmonic distortion and power supply induced intermodulation distortion in a single-ended class-D pulse width modulation amplifier

    公开(公告)号:US12113488B2

    公开(公告)日:2024-10-08

    申请号:US17940332

    申请日:2022-09-08

    CPC classification number: H03F1/3205 H03F3/217 H03F2200/03

    Abstract: An amplifier system may include a first stage having a plurality of inputs configured to receive a differential pulse-width modulation input signal and generate an intermediate signal based on the differential pulse-width modulation input signal, a quantizer configured to generate a modulated signal based on the intermediate signal, a single-ended class-D output stage configured to generate a single-ended output signal as a function of the differential pulse-width modulation input signal, a feedback network configured to feed back the single-ended output signal to a first input of the plurality of inputs and to feed back a ground voltage to a second input of the plurality of inputs, a plurality of buffers, each particular buffer configured to receive a respective component of the differential pulse-width modulation input signal and generate a respective buffered component, and an input network coupled between the plurality of buffers and the first stage. Each particular buffer of the plurality of buffers may include a buffering subcircuit configured to buffer the respective component of the differential pulse-width modulation input signal associated with the particular buffer in order to generate the respective buffered component and a biasing subcircuit configured to limit a magnitude of the respective component of the differential pulse-width modulation input signal driven to circuitry of the buffering subcircuit for driving the respective buffered component.

    Common mode output voltage biasing in class-D audio amplifiers having selectable differential or dual single-ended operation

    公开(公告)号:US11309853B1

    公开(公告)日:2022-04-19

    申请号:US17161815

    申请日:2021-01-29

    Abstract: A class-D amplifier includes a first differential modulator circuit, a first driver circuit including a first high-side switch and a first low-side switch. An input of the first driver circuit may be coupled to a first output of the first differential modulator circuit so that the first differential modulator circuit controls the first driver circuit. The class-D amplifier may also include a second driver circuit including a second high-side switch and a second low-side switch coupling the second and control logic that selects between a single-ended operating state and a differential operating state of the class-D amplifier circuit. The control logic may selectively determine the input of the second driver circuit in conformity with a current operating state of the class-D amplifier circuit so that the first differential modulator circuit controls the second driver circuit when the differential operating state is selected.

    Common-mode insensitive current-sensing topology in full-bridge driver

    公开(公告)号:US11290071B2

    公开(公告)日:2022-03-29

    申请号:US17003564

    申请日:2020-08-26

    Abstract: A system may include a Class-D stage comprising a first high-side switch coupled between a supply voltage and a first output terminal of the Class-D stage, a second high-side switch coupled between the supply voltage and a second output terminal of the Class-D stage, a first low-side switch coupled between a ground voltage and the first output terminal, and a second low-side switch coupled between the ground voltage and the second output terminal. The system may also include current sensing circuitry comprising a first sense resistor coupled between the first high-side switch and the supply voltage, such that an output current through a load coupled between the first output terminal and the second output terminal causes a first sense voltage proportional to the output current across the first sense resistor when the first high-side switch is activated. The current sensing circuitry may also include a second sense resistor coupled between the second high-side switch and the supply voltage, such that an output current through the load causes a second sense voltage proportional to the output current across the second sense resistor when the second high-side switch is activated. The system may also include measurement circuitry configured to measure the first sense voltage and the second sense voltage to determine the output current.

    Ratiometric current-monitor sense resistance mismatch evaluation and calibration

    公开(公告)号:US11500406B2

    公开(公告)日:2022-11-15

    申请号:US17212124

    申请日:2021-03-25

    Abstract: Current monitoring techniques are included in an electronic system that provides power to a load from a power output stage that supplies power to a load. Multiple current control devices form the power output stage in series with multiple sense resistors that provide corresponding sense voltages indicative of current provided through the multiple current control devices to the load in the same or different time intervals. A calibration control circuit controls injection of current through the multiple sense resistors individually and measures the corresponding sense voltages generated by the current to determine resistance values of the multiple sense resistors. A correction subsystem computes a first ratio of a first resistance to a second resistance and a second ratio of a third resistance to a fourth resistance of the multiple sense resistors, and controls compensation for a difference between the first ratio and the second ratio to remove the measurement error.

    Minimizing total harmonic distortion and power supply induced intermodulation distortion in a single-ended class-d pulse width modulation amplifier

    公开(公告)号:US11489498B1

    公开(公告)日:2022-11-01

    申请号:US17338160

    申请日:2021-06-03

    Abstract: An amplifier system may include a first stage having a plurality of inputs configured to receive a differential pulse-width modulation input signal and generate an intermediate signal based on the differential pulse-width modulation input signal, a quantizer configured to generate a modulated signal based on the intermediate signal, a single-ended class-D output stage configured to generate a single-ended output signal as a function of the differential pulse-width modulation input signal, a feedback network configured to feed back the single-ended output signal to a first input of the plurality of inputs and to feed back a ground voltage to a second input of the plurality of inputs, a plurality of buffers, each particular buffer configured to receive a respective component of the differential pulse-width modulation input signal and generate a respective buffered component, and an input network coupled between the plurality of buffers and the first stage. Each particular buffer of the plurality of buffers may include a buffering subcircuit configured to buffer the respective component of the differential pulse-width modulation input signal associated with the particular buffer in order to generate the respective buffered component and a biasing subcircuit configured to limit a magnitude of the respective component of the differential pulse-width modulation input signal driven to circuitry of the buffering subcircuit for driving the respective buffered component.

    ZERO-CROSSING MANAGEMENT IN CLASS-D AUDIO AMPLIFIERS

    公开(公告)号:US20220247367A1

    公开(公告)日:2022-08-04

    申请号:US17589047

    申请日:2022-01-31

    Abstract: Class-D amplifier circuits provide operation with low-distortion zero crossings outside of a unipolar power supply voltage range. The amplifiers include a first H-bridge driver circuit and a second H-bridge driver circuit. The class-D amplifier circuits also include a control circuit having an input for receiving an input signal to be reproduced by the class-D amplifier circuit. The control circuit has outputs coupled to inputs of the first and second H-bridge drivers, and includes one or more modulators. The control circuit selects between actively operating a selected one of the driver circuits or both, according to the signal to be reproduced, while setting an unselected driver circuit to turn either a high-side switch or a low-side switch of the unselected one of the first driver circuit or the second driver circuit fully on for at least some cycles of the one or more modulators.

    Dual-channel class-D audio amplifier having quantizer-combined orthogonal modulation

    公开(公告)号:US11329617B1

    公开(公告)日:2022-05-10

    申请号:US17151877

    申请日:2021-01-19

    Abstract: Class-D amplifiers and modulators therefor provide control of the DC operating point of the outputs of the amplifiers. The modulators generate a sum and difference signal using combiners and introduce the sum signal to a reference input of the quantizer, while the quantization input of the quantizer receives the difference signal. A difference mode loop filter circuit may filter the difference signal and a common mode loop filter may filter the sum signal. Outputs of the quantizer operate a pair of switching circuits to provide either a differential output with the sum signal set to a constant voltage and the difference signal provided by the signal to be reproduced, or a pair of single-ended outputs with the individual input signals used to generate the sum and difference signal, and selection of a differential or dual single-ended operating mode may be performed by a control circuit that reconfigures the combiners.

Patent Agency Ranking