Abstract:
In one embodiment, a method comprises: a first network device in a deterministic network identifying at least one of first and second deterministic transmit opportunities for transmission of a data packet toward a destination device along a deterministic path of the deterministic network, the first deterministic transmit opportunity reserved for the first network device deterministically receiving the data packet from a second network device and the second deterministic transmit opportunity reserved for deterministic transmission by the first network device of the data packet toward the destination device along the deterministic path; the first network device detecting an absence of receiving the data packet from the second network device according to the first deterministic transmit opportunity; and the first network device selectively generating and deterministically transmitting according to the second deterministic transmit opportunity, in response to the absence of receiving the data packet, a management packet along the deterministic path.
Abstract:
In one embodiment, a method comprises: receiving, by a network device in a data network, a wireless data packet containing new data; responding to the wireless data packet, by the network device, by initiating a prescribed randomized collision avoidance method requiring the network device to first wait at least a first half of a prescribed minimum contention interval before attempting transmission at a randomized position within a second half of the prescribed minimum contention interval; selectively retransmitting, by the network device, the wireless data packet based on determining, at the randomized position, that the network device has not received a prescribed number of copies of the wireless data packet; and selectively sending, by the network device to a path computation element in the data network, a message requesting membership in a dominating set in response to transmission of the wireless data packet by the network device.
Abstract:
In one embodiment, a method comprises a first wireless network device identifying a deterministic receive slot reserved for reception of a first data packet from a second wireless network device along a deterministic track in a deterministic network; the first wireless network device transmitting an acknowledgement in the deterministic receive slot, to the second wireless network device, in response to successful reception of the first data packet in the deterministic receive slot; the first network device transmitting a second data packet in the deterministic receive slot, following the acknowledgement, to the second network device.
Abstract:
In one embodiment, a method comprises receiving, by a parent network device in a wireless deterministic network, a retransmit capabilities message from a first child device attached to the parent network device, the retransmit capabilities message specifying that the first child device can detect a data packet transmission to the parent network device by a second child device attached to the parent network device and that is a peer of the first child device; and allocating, by the parent network device, a peer retransmit timeslot to the first child device from within a channel distribution chunk appropriated by the parent network device, the peer retransmit timeslot enabling the first child device to retransmit a data packet on behalf of the second child device to the parent network device.
Abstract:
In one embodiment, a method comprises: promiscuously detecting, by a parent network device in a tree-based network topology, a data packet transmitted to a child network device attached to the parent network device, the data packet transmitted by a grandchild network device attached to the child network device; determining, by the parent network device, whether the data packet transmitted to the child network device is to be forwarded toward a destination via the parent network device; and the parent network device selectively initiating intercepted forwarding of the data packet toward the destination, on behalf of the child network device, based on determining that the data packet is to be forwarded toward the destination via the parent network device.
Abstract:
In one embodiment, a method comprises: a root network device of a tree-based network topology identifying an instability in an identified child device attaching within the tree-based network topology; the root network device generating and storing in a routing information base table, for each sub-child device reachable via the identified child device, a corresponding source-route path starting with the identified child device and ending at the corresponding sub-child device; the root network device adding, to the routing information base table, a current path for reaching the identified child device, enabling the root network device to generate a path for reaching any one sub-child device using the corresponding source-route path via the current path of the identified child device.
Abstract:
In one embodiment, a method comprises: a network device, having attached to a first parent device in a tree-based network topology, attaching to a second parent device advertising better network performance than the first parent device; and the network device detaching from the second parent device, and reattaching to the first parent device, in response to the network device determining the corresponding network performance via the second parent device is worse than any one of the advertised better network performance, the corresponding network performance via the first parent device, or an expected network performance via the second network device.
Abstract:
In one embodiment, a method comprises: generating, by a transmitting network device, a hashed source media access control (MAC) address and a hashed destination MAC address based on hashing a MAC address of the transmitting network device and a destination MAC address of a destination wireless network device, respectively, relative to an epochal transmission sequence value; and transmitting a data frame at a time slot associated with the epochal transmission sequence value, using the hashed source MAC address and the hashed destination MAC address, to the destination wireless network device.
Abstract:
In one embodiment, a method comprises: multicasting, by a wireless network device in a wireless network, a first message originated by the wireless network device and requesting reachability to an identified destination device via an identified target device class; generating, by the wireless network device, plural paths for reaching the identified destination device based on receiving destination advertisement messages having been originated by respective target devices belonging to the target device class; and pluricasting copies of a data packet to the identified destination device via the plural paths.
Abstract:
In one embodiment, a method comprises identifying, by a network device operating in a network topology as a directed acyclic graph (DAG) root, a source-route path for reaching a destination device in the network topology; determining whether one or more parent devices along the source-route path between the network device and the destination device are capable of storing a route entry specifying routing information for reaching the destination device; and causing installation of a route entry for reaching the destination device in one or more of the parent devices determined as capable of storing the corresponding route entry.