Abstract:
A three-phase rotating machine controller includes electric power converters that output, to the winding sets of a three-phase rotating machine, alternating currents having a same amplitude and a phase difference of (30 ±60*n) degrees from each other, n being an integer, and a control unit that reduces a peak of a phase current 1st order component applied to the rotating machine by superimposing therewith a phase current 5th order component and a phase current 7th order component, which have 5 times and 7 times the frequency of the phase current 1st order component, respectively. The control unit superimposes the phase current 5th and 7th order components having an optimum combination of amplitudes such that a peak reduction amount of the phase current 1st order component exceeds 5%, the amplitudes of the phase current 5th and 7th order components being with respect to the amplitude of the phase current 1st order component.
Abstract:
A power converter for converting an electric power for a motor that has three-phase winding wires includes an inverter and a controller. The controller controls the electric power supplied for the three-phase winding wires. The controller either (i) sets a two-phase modulation period for performing a two-phase modulation control when a third frequency that is calculated as a triple frequency of a base wave of the phase currents is smaller than an audible lower limit frequency of a human audible frequency range, or (ii) performs a three-phase modulation control, when the third frequency is equal to or greater than the audible lower limit frequency. In such manner, a heat generation from the maximum heat generating portion of the power converter is mitigated, and a noise that is generated in the audible frequency range is reduced.
Abstract:
A power converter for a three-phase electric rotary machine including first and second winding sets includes: first and second inverters corresponding to the first and second winding sets, respectively; and a control unit including a command calculation unit that calculates first and second voltage command values related to voltages to be applied to the first and second winding sets, and an excess correction unit that corrects first and second voltage command corresponding values corresponding to the first and second voltage command values. When one of the first and second voltage command corresponding values exceeds a limitation value which is set in accordance with a voltage capable of being outputted, the excess correction unit performs an excess correction process for correcting the other of the first and second voltage command corresponding values in accordance with an excess amount over the limitation value.
Abstract:
A rotary machine control apparatus controlling a drive of a rotary machine that has multiple winding groups is provided. The rotary machine control apparatus includes electric power converters in multiple systems, a failure detection portion, and a control portion. An electric power converter has switching elements in an upper arm and a lower arm and converts DC power. The failure detection portion detects a failure of an electric power converter or a winding group. The control portion calculates a current command value and a maximum current limit value, and controls an output to the electric power converter. The control portion stops the output to the electric power converter in a failure system, and the control portion increases the maximum current limit value with respect to the output to an electric power converter in a normal system.
Abstract:
In an alert control apparatus mounted in a vehicle, when collision avoidance control is being performed to automatically activate brakes of the vehicle to avoid collision with a forward object, an alert determiner determines whether or not a predefined alert condition for determining that the collision with the forward object cannot be avoided is met, based on a distance to the forward object and a stopping distance. The stopping distance is a distance the vehicle travels until the vehicle stops moving and is calculated based on the traveling speed of the vehicle and a collision avoidance deceleration at which the traveling speed is decreased under the collision avoidance control. An alert controller, if the alert condition is met, activates at least one alerting device to alert surroundings of the vehicle, and if the alert condition is not met, inhibits operation of the at least one alerting device.
Abstract:
A rotating electric machine control device for controlling a rotating electric machine having a winding set with windings for multiple phases includes: an inverter having upper and lower arm elements connected to high and low potential sides, respectively, and converting an electric power of the rotating electric machine; a terminal voltage detection device detecting a terminal voltage of each phase; a resistor connecting each phase and a positive side of a power supply; and a control device having a signal generation device generating a control signal for the upper and lower arm elements and a failure detection device detecting a failure based on a sum of the terminal voltage in all phases when all control signals represents an off command, and a rotation speed of the rotating electric machine is lower than a threshold.
Abstract:
A control apparatus of a rotary machine controls drive of the rotary machine with winding groups. The control apparatus includes electric power converters in multiple systems, a failure detection portion, and a controller. The electric power converter has switching elements in an upper arm and a lower arm, and converts direct current power. The failure detection portion detects a failure of an electric power converter or a failure of a winding group. The controller operates the switching elements and controls electricity supply. When the failure detection portion detects the failure, the controller stops output to an electric power converter in a failure system, and the controller reduces a total number of times of switching per unit time of the switching elements in a normally operating system.
Abstract:
A controller for a multiple-phase rotating machine includes power converters for supplying alternating current to winding sets of the rotating machine. A pair of each electrical power converter and a corresponding winding set forms a system. The controller further includes a failure detector for detecting a failure in each system. The failure causes a braking current in the rotating machine. The controller further includes a control section for setting a d-axis current and a q-axis current to drive the power converter in each system. When the failure detector detects the failure in any one of the systems, the control section stops the power converter in the failed system and sets the d-axis current in the normal system in such a manner that an electric current in the failed system is reduced.
Abstract:
A control device for a three-phase alternate current motor includes: an inverter for driving the motor; current sensors for sensing current in the motor; and a control means having a feedback control operation part for operating a voltage command of each phase and switching the inverter based on the voltage command. When an absolute value of a sum of the current sensed values of three phases is larger than a threshold, the control means: executes a provisional current sensor system abnormality determination; generates a variation visualizing state, in which a response of a feedback control with respect to a variation in the current sensed value caused by the abnormality is delayed or stopped; and performs a phase identification processing for identifying the current sensor on a phase, in which an absolute value of a current deviation is larger than a threshold.
Abstract:
In a control device for a three-phase rotating machine with first and second winding sets, a current feedback computing section includes a current sum controller and a current difference controller. The current sum controller multiplies, by a sum gain, an error between a sum of current command values for alternating currents output from first and second inverters and a sum of sensed current values and computes a sum of voltage command values. The current difference controller multiplies, by a difference gain, an error between a difference of the current command values and a difference between the sensed current values, and computes a difference of voltage command values. In a variable-responsiveness mode, a gain ratio between the sum gain and the difference gain is varied according to a reference frequency such that the current sum controller and the current different controller are different in responsiveness.