3D-PRINTED TOOLING SHELLS
    12.
    发明申请

    公开(公告)号:US20200290241A1

    公开(公告)日:2020-09-17

    申请号:US16884808

    申请日:2020-05-27

    Abstract: Techniques for producing panels such as for use in a vehicle, boat, aircraft or other transport structure or mechanical structure using a 3-D-printed tooling shell are disclosed. A 3-D printer may be used to produce a tooling shell containing Invar and/or some other material for use in molding the panels. A channel may be formed in a 3-D printed tooling shell for enabling resin infusion, vacuum generation or heat transfer. Alternatively, or in addition to, one or more hollow sections may be formed within the 3-D printed tooling shell for reducing a weight of the shell. The panel may be molded using the 3-D printed tooling shell.

    METHODS AND APPARATUS FOR MANUFACTURING OPTIMIZED PANELS AND OTHER COMPOSITE STRUCTURES

    公开(公告)号:US20220355569A1

    公开(公告)日:2022-11-10

    申请号:US17583109

    申请日:2022-01-24

    Abstract: The disclosure relates to additively manufactured (AM) composite structures such as panels for use in transport structures or other mechanized assemblies. An AM core may be optimized for an intended application of a panel. In various embodiments, one or more values such as strength, stiffness, density, energy absorption, ductility, etc. may be optimized in a single AM core to vary across the AM core in one or more directions for supporting expected load conditions. In an embodiment, the expected load conditions may include forces applied to the AM core or corresponding panel from different directions in up to three dimensions. Where the structure is a panel, face sheets may be affixed to respective sides of the core. The AM core may be a custom honeycomb structure. In other embodiments, the face sheets may have custom 3-D profiles formed traditionally or through additive manufacturing to enable structural panels with complex profiles. The AM core may include a protrusion to provide fixturing features to enable external connections. In other embodiments, inserts, fasteners, or internal channels may be co-printed with the core. In still other embodiments, the AM core may be used in a composite structure such as, for example a rotor blade or a vehicle component.

    Methods and apparatus for manufacturing optimized panels and other composite structures

    公开(公告)号:US11260582B2

    公开(公告)日:2022-03-01

    申请号:US16162301

    申请日:2018-10-16

    Abstract: The disclosure relates to additively manufactured (AM) composite structures such as panels for use in transport structures or other mechanized assemblies. An AM core may be optimized for an intended application of a panel. In various embodiments, one or more values such as strength, stiffness, density, energy absorption, ductility, etc. may be optimized in a single AM core to vary across the AM core in one or more directions for supporting expected load conditions. In an embodiment, the expected load conditions may include forces applied to the AM core or corresponding panel from different directions in up to three dimensions. Where the structure is a panel, face sheets may be affixed to respective sides of the core. The AM core may be a custom honeycomb structure. In other embodiments, the face sheets may have custom 3-D profiles formed traditionally or through additive manufacturing to enable structural panels with complex profiles. The AM core may include a protrusion to provide fixturing features to enable external connections. In other embodiments, inserts, fasteners, or internal channels may be co-printed with the core. In still other embodiments, the AM core may be used in a composite structure such as, for example a rotor blade or a vehicle component.

Patent Agency Ranking