High modulus olefin compounds for fiber optic cable buffer tubes

    公开(公告)号:US11034823B2

    公开(公告)日:2021-06-15

    申请号:US15781587

    申请日:2016-12-06

    Abstract: Wet buffer tubes for use in fiber optic cables are made from a composition comprising in weight percent (wt %) based on the weight of the composition: (A) 22-49% polypropylene (PP), (B) 50-65% high density polyethylene (HDPE), (C) 7-12% compatibilizer comprising in wt % based on the weight of the compatibilizer: (1) 30-90% olefin block composite comprising ethylene-propylene (EP) copolymer, isotactic polypropylene (iPP), and an EP-iPP diblock polymer, and (2) 10-70% maleic anhydride grafted HDPE (MAH-g-HDPE); and (D) 0.05-5.0% nucleating agent.

    High Modulus Olefin Compounds for Fiber Optic Cable Buffer Tubes

    公开(公告)号:US20200263006A1

    公开(公告)日:2020-08-20

    申请号:US15781587

    申请日:2016-12-06

    Abstract: Wet buffer tubes for use in fiber optic cables are made from a composition comprising in weight percent (wt %) based on the weight of the composition: (A) 22-49% polypropylene (PP), (B) 50-65% high density polyethylene (HDPE), (C) 7-12% compatibilizer comprising in wt % based on the weight of the compatibilizer: (1) 30-90% olefin block composite comprising ethylene-propylene (EP) copolymer, isotactic polypropylene (iPP), and an EP-iPP diblock polymer, and (2) 10-70% maleic anhydride grafted HDPE (MAH-g-HDPE); and (D) 0.05-5.0% nucleating agent.

    Conductor jacket and process for producing same

    公开(公告)号:US11015043B2

    公开(公告)日:2021-05-25

    申请号:US16470726

    申请日:2017-12-18

    Abstract: The present disclosure provides a process. In an embodiment, the process includes blending a broad molecular weight distribution (MWD) ethylene-based polymer having an 121/12 ratio from 55 to 85 with a narrow MWD ethylene-based polymer having an 121/12 ratio from 20 to 50. The process includes forming a blend component comprising from 20 wt % to 45 wt % of the broad MWD ethylene-based polymer, from 80 wt % to 55 wt % of the narrow MWD ethylene-based polymer, and optional carbon black. The blend component has a density from 0.925 g/cc to 0.955 g/cc and an 121/12 ratio from 30 to 55. The process includes extruding the blend component over a conductor at a rate greater than 1.02 m/s, and forming a conductor jacket having a surface smoothness from 30 μ-inch to 80 μ-inch.

Patent Agency Ranking