Abstract:
The present disclosure provides a composition. In an embodiment, the composition includes an olefin-based polymer and from 0.15 wt % to 15 wt % of an odor suppressant. The odor suppressant includes (i) from 0.05 wt % to 2 wt % of a metal oxide having a band gap greater than 5.0 electron volts (eV), and (ii) from 0.1 wt % to 13 wt % of an acid copolymer. The ratio of metal oxide to acid copolymer is from 1:20 to 1:1. Weight percents are based on the total weight of the composition.
Abstract:
Embodiments are directed to compositions comprising at least one polyethylene (PE) having a density ranging from 0.850 g/cc to 0.970 g/cc, and a polymer processing aid (PPA) masterbatch comprising a PPA polymer blend, at least one polymeric carrier, and optionally up to 12 wt. % of one or more inorganic materials. The PPA polymer blend comprises from 40 to 60 wt. % of one or more fluoroelastomers, and from 40 to 60 wt. % of polyethylene glycol. The composition further comprises at least one fragrance oil. The composition is defined by the equation: RED (PE−PPA masterbatch)
Abstract:
The present disclosure provides a fiber and fabrics made therefrom. In an embodiment, a fiber is provided and includes an odor control composition. The odor control composition includes (A) from 85 wt % to 99.5 wt % of an olefin-based polymer and (B) from 15 wt % to 0.5 wt % of an odor suppressant. The odor suppressant includes: (i) an ionomer, (ii) particles of zinc oxide, and (iii) particles of copper oxide.
Abstract:
The present disclosure provides a composition. In an embodiment, the composition includes (A) from 85 wt % to 99 wt % of an olefin-based polymer and (B) from 15 wt % to 1 wt % of an odor suppressant. The odor suppressant is a blend of (i) particles of zinc oxide, and (ii) zinc ionomer. The zinc oxide particles have a D50 particle size from 100 nm to 3000 nm, a surface area from 1 m2/g to 9 m2/g, and a porosity less than 0.020 m3/g. The composition has a methyl mercaptan odor suppression value of less than 70 at 3 days as measured in accordance with ASTM D5504-12.
Abstract:
A method of fused filament fabrication (FFF) additive manufacturing comprises employing a thermoplastic blend comprised of high density polyethylene and a second thermoplastic polymer, wherein the second polymer is a low density polyethylene (LDPE), functionalized polyolefin or combination thereof and the amount of high density polyethylene to the amount of second thermoplastic polymer by weight is a ratio from 1.5/1 to 20/1. LDPE means a polyethylene that have been radically polymerized at high pressure. The method allows for the additive manufacturing article that retains the desirable mechanical properties of HDPE without experiencing the problems inherent in FFF printing of HDPE or use of solid fillers. In a particular embodiment, the additive manufactured article has a continuous phase and the second thermoplastic polymer is present as a discontinuous phase within the additive article manufactured article and the filament used to make the article.
Abstract:
An additive elastomeric manufactured part having an elongation at break of at least 50% may be made by a method comprising the following. A material comprising a prepolymer and filler is first dispensed through a nozzle to form an extrudate deposited on a base. The base, nozzle or combination thereof is moved while dispensing the material so that there is horizontal displacement between the base and nozzle in a predetermined pattern to form an initial layer of the material on the base. Subsequent layers are then formed on the initial layer by repeating the dispensing and movement on top of the initial layer and layers that follow.
Abstract:
A process for purification of a carbon dioxide feedstock that includes carbon dioxide and gaseous and liquid C1+ hydrocarbons. Specifically, a carbon dioxide feedstream is passed through one or more separation unit, each separation unit removing one or more C1+ hydrocarbon from the carbon dioxide feedstream to provide a richer carbon dioxide gas stream. The one or more separation unit employs an adsorption media and has an adsorption step and a media regeneration step.
Abstract:
The present invention relates to a method of separating and recovering NGLs from a natural gas feedstream. Specifically, the present method allows for the separation of ethane and heavier hydrocarbons and/or propane and heavier hydrocarbons from a raw natural gas feedstream to provide pipeline quality natural gas. One embodiment of this method provides for the use of a regenerable adsorbent media which is regenerated by a microwave heating system. Said regeneration step may be operated as a batch process, a semi-continuous process, or a continuous process.
Abstract:
Prepare a polymer foam by expanding a foamable polymer composition of a copolymer component and a blowing agent where the copolymer component accounts for more than 50 weight-percent of the total polymer weight in the foamable polymer composition and is one or more than one styrene-carboxylic acid copolymer having an acid number of 20 or higher while the blowing agent comprises a fluorinated blowing agent, less than 70 weight-percent of which is 1,1,2,2-tetrafluoroethane and less than five weight-percent is carbon dioxide and C3-C5 hydrocarbons make up less than 30 mole-percent of the blowing agent; expand the foamable polymer composition into a polymer foam having an average cell size of less than 0.5 millimeters where the copolymer composition is a continuous phase in the polymer foam.
Abstract:
A composition comprising a mesoporous silica having grafted therewith an ionic liquid to form a mesoporous silica composition offers desirable levels of functionality, sorption, specific surface functionalization, and selectivity for polar gas/non-polar gas and olefin/paraffin separations. One particular embodiment employs silylated 3,3′-(2,2-bis(hydroxymethyl)propane-1,3-diyl)bis(1-methyl-1H-imidazol-3-ium)bis-((trifluoromethyl-sulfonyl)amide as the ionic liquid. The mesoporous silica composition may be configured as, for example, a membrane.