Abstract:
A system for routing signals in a Distributed Antenna System includes a plurality of Digital Multiplexer Units (DMUs). The plurality of DMUs are coupled and operable to route signals between the plurality of DMUs. Each of the plurality of DMUs is operable to receive a digital signal from a base band unit (BBU). The system also includes a plurality of Digital Remote Units (DRUs) coupled to at least one of the plurality of DMUs and operable to transport signals between DRUs and the at least one of the plurality of DMUs.
Abstract:
A system for networking Wi-Fi Access Points in a Distributed Antenna System includes a plurality of Digital Access Units (DAUs). The plurality of DAUs are coupled and operable to route signals between the plurality of DAUs. The system also includes a plurality of Digital Remote Units (DRUs) coupled to the plurality of DAUs and operable to transport signals between DRUs and DAUs and a plurality of DAU ports and DRU ports. The system further includes a Framer/Deframer, wherein the cellular payload data is separated from the IP data and a network switch. The IP data from a plurality of DAU and DRU ports are buffered and routed to a plurality of DAU and DRU ports. Furthermore, the system includes a plurality of Wi-Fi access points coupled via a mesh network to Wi-Fi access points connected to a plurality of DRUs.
Abstract:
A redundancy system for data transport in a Distributed Antenna System (DAS) includes a plurality of Digital Access Units (DAUs). Each of the plurality of DAUs is fed by a plurality of data streams and is operable to transport digital signals between others of the plurality of DAUs. The redundancy system also includes a plurality of Digital Distribution Units (DDUs). Each of the plurality of DDUs is in communication with each of the plurality of DAUs using cross connection communication paths. The redundancy system further includes a plurality of Digital Remote Units (DRUs). Each of the plurality of DRUs is in communication with each of the plurality of DDUs using cross connection communications paths.
Abstract:
A method for operating a Distributed Antenna System (DAS) includes providing a plurality of Digital Remote Units (DRUs), each configured to send and receive wireless radio signals and providing a plurality of inter-connected Digital Access Units (DAUs), each configured to communicate with at least one of the plurality of DRUs via optical signals and each being coupled to at least one sector of a base station. The method also includes providing a plurality of sensors operable to detect activity at each of the plurality of DRUs, turning off a DRU downlink signal at one of the plurality of DRUs in response to an output from one of the plurality of sensors, and turning on a DRU downlink signal at another of the plurality of DRUs in response to an output from another of the plurality of sensors.
Abstract:
A method for operating a DAS includes providing a set of digital remote units (remotes) operable to send and receive wireless radio signals. Each of the set of remotes is associated with a geographic area. The method also includes providing a digital access unit (host) operable to communicate with the set of remotes, receiving uplink signals at one or more of the set of remotes, and monitoring train activity in the geographic areas. The method further includes increasing a gain coefficient associated with one of the set of remotes in response to determining an increase in monitored train activity, decreasing a gain coefficient associated with another of the set of remotes in response to determining a decrease in monitored train activity, and transmitting, to the host, scaled uplink signals associated with the one of the set of remotes and the another of the set of remotes.
Abstract:
A system for data transport in a Distributed Antenna System (DAS) includes a plurality of remote Digital Access Units (DAUs) located at a Remote location. The plurality of remote DAUs are coupled to each other and operable to transport digital signals between the plurality of remote DAUs. The system also includes a plurality of central hubs. Each of the plurality of central hubs is in communication with one of the remote DAUs using an electrical communications path. The system further includes a plurality of transmit/receive cells. Each of the plurality of transmit/receive cells includes a plurality of remote hubs. Each of the remote hubs in one of the plurality of transmit/receive cells is in communication with one of the plurality of central hubs using an optical communications path.
Abstract:
A system for data transport in a Distributed Antenna System (DAS) includes a plurality of remote Digital Access Units (DAUs) located at a Remote location. The plurality of remote DAUs are coupled to each other and operable to transport digital signals between the plurality of remote DAUs. The system also includes a plurality of central hubs. Each of the plurality of central hubs is in communication with one of the remote DAUs using an electrical communications path. The system further includes a plurality of transmit/receive cells. Each of the plurality of transmit/receive cells includes a plurality of remote hubs. Each of the remote hubs in one of the plurality of transmit/receive cells is in communication with one of the plurality of central hubs using an optical communications path.
Abstract:
A system for networking Wi-Fi Access Points in a Distributed Antenna System includes a plurality of Digital Access Units (DAUs). The plurality of DAUs are coupled and operable to route signals between the plurality of DAUs. The system also includes a plurality of Digital Remote Units (DRUs) coupled to the plurality of DAUs and operable to transport signals between DRUs and DAUs and a plurality of DAU ports and DRU ports. The system further includes a Framer/Deframer, wherein the cellular payload data is separated from the IP data and a network switch. The IP data from a plurality of DAU and DRU ports are buffered and routed to a plurality of DAU and DRU ports. Furthermore, the system includes a plurality of Wi-Fi access points coupled via a mesh network to Wi-Fi access points connected to a plurality of DRUs.
Abstract:
A method for operating a DAS includes providing a set of digital remote units (remotes) operable to send and receive wireless radio signals. Each of the set of remotes is associated with a geographic area. The method also includes providing a digital access unit (host) operable to communicate with the set of remotes, receiving uplink signals at one or more of the set of remotes, and monitoring train activity in the geographic areas. The method further includes increasing a gain coefficient associated with one of the set of remotes in response to determining an increase in monitored train activity, decreasing a gain coefficient associated with another of the set of remotes in response to determining a decrease in monitored train activity, and transmitting, to the host, scaled uplink signals associated with the one of the set of remotes and the another of the set of remotes.
Abstract:
A system for routing signals in a Distributed Antenna System includes a plurality of local Digital Access Units (DAUs) located at a Local location. Each of the plurality of local DAUs is coupled to each other and operable to route signals between the plurality of local DAUs. Each of the plurality of local DAUs includes one or more Base Transceiver Station (BTS) RF connections. Each of the plurality of BTS RF connections is operable to be coupled to one of one or more sectors of a BTS. The system also includes a plurality of remote DAUs located at a Remote location. The plurality of remote DAUs are coupled to each other and operable to transport signals between the plurality of remote DAUs.