Abstract:
Catalytic colloidal metal particles bound to a biomolecule such as an antibody, avidin, or streptavidin are useful for detecting the presence of the biomolecule in an assay such as an immunoassay.
Abstract:
A sensor for ultra-low concentration chemical recognition comprises a force transducer, a tip coupled to this force transducer, and a substrate positioned for force interaction with the force transducer tip, where the substrate and tip are chemically modified with antigens, antibodies, nucleic acids, or chelating agents so that there is a specific force interaction between the tip and the substrate in the presence of the target species, and a measurably different force interaction in the absence of the target species.
Abstract:
A target polynucleic acid strand may be detected within a sample. A sensing strand of complementary polynucleic acid is labelled, at at least two internucleotide phosphate groups, with labels which vary their electronically interaction with each other, and thus their emission or absorption spectra, depending upon whether the sensing strand is bound to target polynucleic acid in the sample.
Abstract:
Disclosed herein is a method for producing excess enthalpy by (a) either dispersing atomic metal ions or clusters on a support and reacting the metal ions with a chelating ligand or dispersing chelated atomic metal ions on a support and (b) pressurizing with hydrogen or deuterium to reduce the metal ion to a metal atom resulting in the growth of dispersed metal particles less than 2 nm in diameter on the support. During the particle growth, there is a growth period during which a critical particle size is reached and excess enthalpy is produced. The growth period is typically several days long.
Abstract:
A method for producing excess enthalpy by impregnating metallic precursors on an oxide support that reduces sintering and particle growth; drying the impregnated support at a temperature where the particle growth is minimal; reducing the metallic precursors at a second temperature where the particle growth results in supported metallic particles 2 nm or less in size; and pressurizing the supported metallic particles in the presence of deuterium. The metal particles may comprise palladium, platinum, mixtures thereof, or mixtures of palladium and/or platinum with other elements. Also disclosed is a method for measuring excess enthalpy by placing a test material in a pressure vessel; heating the pressure vessel; evacuating the pressure vessel; introducing deuterium, hydrogen, or both into the pressure vessel; measuring the enthalpy generated during pressurization; again evacuating the pressure vessel; and measuring the enthalpy used during depressurization.
Abstract:
Disclosed herein is a method for producing excess enthalpy by (a) either dispersing atomic metal ions or clusters on a support and reacting the metal ions with a chelating ligand or dispersing chelated atomic metal ions on a support and (b) pressurizing with hydrogen or deuterium to reduce the metal ion to a metal atom resulting in the growth of dispersed metal particles less than 2 nm in diameter on the support. During the particle growth, there is a growth period during which a critical particle size is reached and excess enthalpy is produced. The growth period is typically several days long
Abstract:
A method for producing excess enthalpy by impregnating metallic precursors on an oxide support that reduces sintering and particle growth; drying the impregnated support at a temperature where the particle growth is minimal; reducing the metallic precursors at a second temperature where the particle growth results in supported metallic particles 2 nm or less in size; and pressurizing the supported metallic particles in the presence of deuterium. The metal particles may comprise palladium, platinum, mixtures thereof, or mixtures of palladium and/or platinum with other elements. Also disclosed is a method for measuring excess enthalpy by placing a test material in a pressure vessel; heating the pressure vessel; evacuating the pressure vessel; introducing deuterium, hydrogen, or both into the pressure vessel; measuring the enthalpy generated during pressurization; again evacuating the pressure vessel; and measuring the enthalpy used during depressurization.
Abstract:
A metron refers to a molecule which contains a pre-defined number of high affinity binding sites for metal ions. Metrons may be used to prepare homogenous populations of nanoparticles each composed of a same, specific number of atoms, wherein each particle has the same size ranging from 2 atoms to about ten nanometers.
Abstract:
A hand-held portable drug monitoring system to detect and quantitate cocaine and other organic drugs in saliva, sweat, and surface wipes by using an ion selective electrode or an array of ion selective electrodes. The ion selective electrode has a cast membrane reference electrode and a sensing electrode with a hydrophobic polymer, a plasticizer, and an ionophore selective for the organic drug to be tested. The ion selective electrode can be connected to a converter that coverts a voltage reading from the ion selective electrode to a quantitative drug concentration level. Also disclosed is the related method of using an ion selective electrode to detect an organic drug in saliva, sweat, and surface wipes, the method of testing electrical contact in an ion selective electrode, and the method of making a cast membrane reference electrode.
Abstract:
A miniature, lightweight, inexpensive, environmental monitoring system containing a number of sensors that can simultaneously and continuously monitor fluorescence, absorbance, conductivity, temperature, and several ions. Sensors that monitor similar parameters can cross-check data to increase the likelihood that a problem with the water will be discovered.