摘要:
A thin-film solar cell is made up of semiconductor layers formed on a substrate. The substrate includes an insulator containing electrically conducting nucleation sites which is interposed between the electrical contact of the substrate and the adjacent semiconductor. The insulator can also be optically transparent. Grain boundaries and voids terminate on the insulator. The solar cell is fabricated by selectively introducing nucleation sites into the insulator layer which is formed on the substrate material, and activating the nucleation sites during growth of the semiconductor layers.
摘要:
A method of purifying silicon, comprising feeding a sparging gas into a liquid melt [10] containing molten silicon and at least one impurity, in which the sparging gas is used to react with or move one or more impurity contained within the silicon. The products of such reaction or movement may be removed, e.g., by liquid-gas extraction, by liquid-liquid extraction or by liquid-solid extraction.
摘要:
A thin-film solar cell is made up of semiconductor layers formed on an aluminum silicon eutectic alloy substrate. The substrate includes an aluminum oxide insulator containing electrically conducting silicon nucleation sites which is interposed between the electrical contact of the substrate and the adjacent semiconductor. Grain boundaries and voids terminate on the insulator. The solar cell is fabricated by oxidizing the aluminum-silicon substrate to form a layer of aluminum oxide with unactivated silicon site material dispersed therein and activating the silicon nucleation sites during growth of the semiconductor layers.
摘要:
A thin-film solar cell on a substrate is fabricated by selectively introducing nucleation sites into the insulator layer which is formed on the substrate material, and activating the nucleation sites during growth of the semiconductor layers. The solar cell is made up of semiconductor layers formed on a substrate. The substrate includes an insulator containing electrically conducting nucleation sites which is interposed between the electrical contact of the substrate and the adjacent semiconductor. The insulator can also be optically transparent. Grain boundaries and voids terminate on the insulator.
摘要:
A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.
摘要:
A solar cell having a copper-bearing absorber is provided with a composite transparent encapsulating layer specifically designed to prevent oxidation of the copper sulfide. In a preferred embodiment, the absorber is a layer of copper sulfide and the composite layer comprises a thin layer of copper oxide formed on the copper sulfide and a layer of encapsulating glass formed on the oxide. It is anticipated that such devices, when exposed to normal operating conditions of various terrestrial applications, can be maintained at energy conversion efficiencies greater than one-half the original conversion efficiency for periods as long as thirty years.
摘要:
A front-surface-illuminated photovoltaic device, having a first semiconductor layer (180) with a back surface, a second semiconductor layer (130) with a front surface, the second layer (130) having the opposite doping type to the first layer (180) and deposited on the first layer (180); and at least one ohmic contact (160, 230) to each of the first (180) and second (130) semiconductor layers; and a process for making the photovoltaic device. The device may also have a barrier layer (190) for reducing diffusion of impurities from the first semiconductor layer (180) into the second semiconductor layer (130), a blocking layer (120), and a reflector layer (200). The device may have an array of first regions (115) in which the second layer (130) is of opposite doping type to that of the first layer (180) and forms p-n junctions (240) in these first regions (115), and second regions (300), each second region (300) containing the barrier layer (190) and the reflector layer (200). The first (130) and second (300) regions are laterally intermixed, have a lateral shape of either bounded regions or stripes, or a combination of bounded regions and stripes.
摘要:
A technique for manufacturing durable, reliable solar cells by a continuous process suitable for large-scale manufacture involves, in substance, providing a reel of thin metal foil substrate and forming on the substrate a series of layers operative to form a photovoltaic junction, short prevention blocking layers, contacts and integral encapsulation. The foil substrate is processed as a continuous reel substantially until final testing at which point, if desired, it can be cut into individual cells for deployment. In comparison with a batch process, the continuous technique can reduce manufacturing cost by as much as a factor of two.
摘要:
This invention relates to a high efficiency solar cell with a novel architecture. In one embodiment, the solar cell is comprised of a high energy gap cell stack and a dichroic mirror. The high energy gap cell stack is exposed to solar light before there is any splitting of the solar light into spectral components. Each cell in the high energy gap cell stack absorbs the light with photons of energy greater than or equal to its energy gap, i.e., the blue-green to ultraviolet portion of the solar light. Each cell in the high energy gap cell stack is transparent to and transmits light with photons of energy less than its energy gap. Spectral splitting is then performed by means of the dichroic mirror on the remaining light, i.e., the light transmitted by the high energy gap cell stack.
摘要:
High efficiency, thin active-layer silicon solar cells and a process for their fabrications have been provided. The cells are characterized by a capability of employing a low-cost, metallurgical grade silicon for the substrate. The substrate has a silicon dioxide barrier coating with electrical conductivity to the active semiconductor layers provided by a multiplicity of fine holes through the oxide. The holes have silicon therein to afford electrical continuity between the active layers and the silicon of the substrate. The process comprises in situ formation of silicon dioxide on the silicon, formation of the holes in the oxide by photolithography, and etching enabling nucleation and growth of silicon in the holes by epitaxy.