Abstract:
A WDM device having a controller that individually controls the operating parameters of tunable lasers and the temperatures of an optical multiplexer and etalon. The device employs a spectral analyzer to measure the spectral composition of the optical output signal produced by the device. Based on the analyses of the measured spectral composition, the controller sets the temperatures of the tunable lasers, optical multiplexer, and optical etalon to values that cause: (i) middle frequencies of transmission bands of the optical multiplexer to be spectrally aligned with the corresponding frequencies of the specified frequency grid, (ii) each laser line to be properly positioned within the corresponding transmission band, and (iii) transmission resonances of the optical etalon to be properly positioned with respect to the laser lines.
Abstract:
An optical photonic device comprising a planar semiconductor substrate having a light-guiding layer thereon, a primary laser light source in said light-guiding layer and a vertical coupler optically coupled to the primary laser light source by waveguide portions of the light-guiding layer. The vertical coupler is configured to receive a light beam from the primary laser light source and redirect the light beam in a direction that is substantially perpendicular to a surface of the planar substrate.
Abstract:
An optical transmitter that uses half-rate electrical signals, without multiplexing them to the full rate, to generate a full-rate optical duobinary signal. In one embodiment, an optical transmitter of the invention has a Mach-Zehnder modulator (MZM) driven by two half-rate electrical data streams. A first half-rate data stream is applied to drive a first arm of the MZM. A delay element misaligns a second half-rate data stream that is synchronized with the first data stream by one half of a bit period, and the resulting misaligned data stream is applied to drive a second arm of the MZM. The MZM is configured to (i) transmit substantially no light from the feeding laser when the applied data streams have the same binary value and (ii) have a maximum transmission when the applied data streams have different binary values, thereby generating a full-rate optical duobinary signal at its output.
Abstract:
A modular building block for supporting arrays of microlenses, microlasers and microphotodetectors, etc. in an optical beam relay system used as an optical interconnection network. The building block includes a frame member on which is mounted the array. The frame member includes a base portion that is press fitted to the smooth top surface of a plate member. The bottom surface of the plate member includes a rail portion that is secured into a groove in the support structure, such as a table, that also supports various elements of the optical interconnection network.
Abstract:
A WDM device having a controller that individually controls the operating parameters of tunable lasers and the temperatures of an optical multiplexer and etalon. The device employs a spectral analyzer to measure the spectral composition of the optical output signal produced by the device. Based on the analyses of the measured spectral composition, the controller sets the temperatures of the tunable lasers, optical multiplexer, and optical etalon to values that cause: (i) middle frequencies of transmission bands of the optical multiplexer to be spectrally aligned with the corresponding frequencies of the specified frequency grid, (ii) each laser line to be properly positioned within the corresponding transmission band, and (iii) transmission resonances of the optical etalon to be properly positioned with respect to the laser lines.
Abstract:
In one embodiment, a three-stage scalable hybrid switch fabric has an input stage with one or more electronic input crossbar switches, a middle stage, and an output stage with one or more electronic output crossbar switches. The middle stage has (1) tunable optical transmitters that convert electrical signals received from the input stage into optical signals having selectable wavelengths, (2) one or more passive, wavelength-dependent optical routers that route the optical signals received from the transmitters at input nodes to output nodes, each output node determined by the wavelength of the optical signal and possibly by the input node at which the optical signal is applied, and (3) optical receivers that convert the routed optical signals into electrical signals provided to the output stage. Each scaling increment includes (i) an input crossbar switch and its corresponding optical transmitters and (ii) an output crossbar switch and its corresponding optical receivers.
Abstract:
A dispersion compensator having relatively uniform transmission characteristics over the bandwidth of a communication channel. The compensator is designed to process an optical signal corresponding to the communication channel by decomposing that signal into spectral components, routing different components along different optical paths that impart relative delays between the components, and recombining the delayed components spatially and directionally to generate a processed optical signal with reduced chromatic dispersion. In one embodiment, the compensator is a waveguide circuit that includes four diffraction gratings operating in transmission and optically coupled to a tunable lens array, in which different tunable lenses receive light corresponding to different communication channels. For each channel, a desired group delay value is produced by selecting magnification strength of the corresponding tunable lens.
Abstract:
An optical transmitter that uses half-rate electrical signals, without multiplexing them to the full rate, to generate a full-rate optical duobinary signal. In one embodiment, an optical transmitter of the invention has a Mach-Zehnder modulator (MZM) driven by two half-rate electrical data streams. A first half-rate data stream is applied to drive a first arm of the MZM. A delay element misaligns a second half-rate data stream that is synchronized with the first data stream by one half of a bit period, and the resulting misaligned data stream is applied to drive a second arm of the MZM. The MZM is configured to (i) transmit substantially no light from the feeding laser when the applied data streams have the same binary value and (ii) have a maximum transmission when the applied data streams have different binary values, thereby generating a full-rate optical duobinary signal at its output.
Abstract:
An optical assembly for a wavelength-division-multiplexing (WDM) transmitter or receiver that lends itself to cost-effective production-line manufacturing. In one embodiment, the fiber optic assembly has a vernier-type arrayed waveguide grating (AWG) with five optical ports at one side and fourteen optical ports at another side. Ten of the fourteen ports are optically coupled to ten photo-detectors or lasers. A selected one of the five ports is optically coupled to an external optical fiber. The coupling optics and the mounting hardware for the AWG are designed to accommodate, with few relatively straightforward adjustments performed on the production line, any configuration of the AWG in which any consecutive ten of the fourteen ports are optically coupled to the ten photo-detectors or lasers.
Abstract:
A wavelength-selective cross-connect (WSXC) device having N input ports and M output ports and configured to route any set of one or more carrier wavelengths from a corresponding input port to any selected output port. In one embodiment, the WSXC device includes a diffraction grating and a beam-steering device optically coupled to each other and to the input/output ports so that each of the carrier wavelengths traverses the diffraction grating and the beam-steering device two or more times en route from the respective input port to a designated output port. Various unfolded configurations of the WSXC device are also disclosed.