摘要:
The present invention provides methods and materials for use in applying a coating on a surface of a magnesium component. The method includes the steps of: accelerating a coating powder to a velocity of between about 500 to about 1200 meters/second, wherein the coating powder comprises a material selected from the group consisting of aluminum, aluminum alloys, titanium, titanium alloys, and composites; directing the coating powder through a convergent-divergent nozzle onto the surface of the magnesium component; and forming a coating on the surface of the magnesium component so as to substantially cover the surface of the magnesium component. The coating thickness may be between approximately 0.1 to approximately 1.0 mm.
摘要:
A braze material and method of brazing titanium metals. The material may consist of Ti, Ni, Cu Zr, PM and M where PM is a precious metal and M may be Fe, V, Cr, Co, Mo, Nb, Mn, Si, Sn, Al, B, Gd, Ge or combinations thereof, with the (Cu+PM)/Ni ratio around 0.9. Optionally, a second brazing may be performed to rebraze any braze joint that did not braze successfully. The second brazing material has a lower braze temperature than the first and may consist of a mixture of Ti, Ni, Cu, Zr PM and M with from 1–20 wt % more Zr, PM, M or combinations thereof than the first braze. The braze material may be placed on a base material, in a vacuum furnace, and heated to form a braze joint between the braze and base material. The heating step may occur from about 800–975° C. and over 3 to 15 minutes.
摘要:
A method for producing environment-protective coatings on a gas turbine engine component includes forming a substrate having an outer surface. The substrate includes a nickel-based superalloy that contains at least one reactive element. A first coating comprising aluminum is then formed on the substrate outer surface. The at least one reactive element is then diffused into the first coating to produce a reactive element-modified aluminide coating.
摘要:
A method for coating a surface of a metal component comprises the steps of cold gas-dynamic spraying a powder material on the metal component surface to form a coating, the powder material being sufficiently heated to impact the metal component surface at between about 30% and about 70% of the powder material's melting temperature in kelvins. Another method for coating a surface of a metal component using a powder material comprises the steps of heating the metal component surface to between about 30% and about 70% of the substrate's melting temperature, and then of the powder material's melting temperature in kelvins, and cold gas-dynamic spraying the powder material on the metal component surface to form a coating.
摘要:
A braze material and method of brazing titanium metals. The material may consist of Ti, Ni, Cu Zr, PM and M where PM is a precious metal and M may be Fe, V, Cr, Co, Mo, Nb, Mn, Si, Sn, Al, B, Gd, Ge or combinations thereof, with the (Cu+PM)/Ni ratio around 0.9. Optionally, a second brazing may be performed to rebraze any braze joint that did not braze successfully. The second brazing material has a lower braze temperature than the first and may consist of a mixture of Ti, Ni, Cu, Zr PM and M with from 1-20 wt % more Zr, PM, M or combinations thereof than the first braze. The braze material may be placed on a base material, in a vacuum furnace, and heated to form a braze joint between the braze and base material. The heating step may occur from about 800-975° C. and over 3 to 15 minutes.
摘要:
A protective coating for a component comprising a ceramic based substrate, and methods for protecting the component, the protective coating adapted for withstanding repeated thermal cycling. The substrate may comprise silicon nitride or silicon carbide, and the protective coating may comprise at least one tantalate of scandium, yttrium, or a rare earth element. The protective coating may further comprise one or more metal oxides. The coating protects the substrate from combustion gases in the high temperature turbine engine environment. The coating may be multi-layered and exhibits strong bonding to Si-based substrate materials and composites.
摘要:
A component comprising a silicon-based substrate and a diffusion barrier coating disposed on the silicon-based substrate. The diffusion barrier coating comprises an isolation layer disposed directly on the silicon-based substrate and at least one oxygen barrier layer disposed on the isolation layer. The oxygen barrier layer prevents the diffusion of oxygen therethrough, and prevents excessive oxidation of the silicon-based substrate. The isolation layer(s) prevent contaminants and impurities from reacting with the oxygen barrier layer. An environmental barrier coating may be disposed on the diffusion barrier coating, and a thermal barrier coating may be disposed on the environmental barrier coating. Methods for making a component having a diffusion barrier coating are also disclosed.
摘要:
An environmentally and thermally protected component comprising a silicon-based ceramic or composite substrate and an environmental and thermal barrier coating disposed on the substrate. The environmental and thermal barrier coating comprises at least about 50 mole % AlTaO4. The composition of the environmental and thermal barrier coating may be adapted to provide excellent CTE (coefficient of thermal expansion) match with a substrate, such as a SiC-based ceramic or composite. Coating compositions of the invention have a stable crystalline structure at a temperature up to at least about 1550° C. Methods for preparing an environmentally and thermally protected component are also disclosed.
摘要翻译:环境和热保护的组分,其包含硅基陶瓷或复合衬底以及设置在衬底上的环境和热障涂层。 环境和隔热涂层包含至少约50摩尔%的Al Ta O 4。 环境和隔热涂层的组成可以适于提供优异的CTE(热膨胀系数)与诸如SiC基陶瓷或复合材料的基底匹配。 本发明的涂料组合物在高达至少约1550℃的温度下具有稳定的晶体结构。还公开了制备环境和热保护组分的方法。
摘要:
An electrolyte for use in electrolytic platinum platinum plating that results in reduced Cl, S, or P contaminant production. The bath comprises 0.01 to 320 g/lit of platinum in the form of the platinum salt dinitrodiammine platinum, Pt(NH3)2(NO2)2 or variants thereof and 0.1 to 240 g/lit of alkali metal carbonate M2CO3 or bicarbonate MHCO3 where M is selected from a group comprising lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs).
摘要:
A heat exchanger includes one or more parts composed of a braze clad aluminum alloy having a composition defined essentially by the formula: Al 1.1% Mn 1.1% Mg 0.15 Cu and being brazed to other aluminum parts. The heat exchanger exhibits usable strength at operating temperatures ranging up to 232.degree. C. �450.degree. F!, and is especially suited for use in the charge air cooler of a diesel engine.