Abstract:
Systems and methods for the dynamic control of task assignments in a fabrication process that employs a plurality of machines to fabricate a manufactured component. These systems and methods may include executing a plurality of task assignments with an available portion of the plurality of machines, monitoring a process variable that defines the available portion of the plurality of machines, and adjusting the plurality of task assignments to create a plurality of adjusted task assignments based upon the monitoring. The plurality of task assignments may include a plurality of tasks that are to be completed during fabrication of the manufactured component, and the executing may include initiating a respective task assignment of the plurality of task assignments with each machine in the available portion of the plurality of machines, thereby fabricating at least a portion of the manufactured component.
Abstract:
A method for fabricating a grid-stiffened structure from fiber-reinforced composite materials. A skin is applied to a smooth, hard base tool. Ribs comprised of carbon-fiber tows are formed on the skin, and shallow cavities are formed between the ribs and the skin. An expansion block is placed in each of the cavities, and is held in place by an elastomeric contact adhesive having adhesive properties that are substantially diminished when the adhesive is heated to an elevated curing temperature. The assembly is then autoclave cured. After cooling, the formed structure is separated from the base tool and the expansion blocks are removed from the cavities. A grid-stiffened sandwich structure is formed by applying an outer skin over the ribs and expansion blocks, before curing the assembly. After cooling, the outer skin is removed to allow extraction of the blocks, and subsequently bonded to the ribs.
Abstract:
To apply a course on a layup mold, a ply boundary that defines a ply area on the layup mold is determined and a tape of composite material is applied on the ply area at an oblique angle relative to the ply boundary. In addition, a leading edge of the tape is butt cut and the leading edge, and the ply boundary essentially converge. Furthermore, a trailing edge is generated. The trailing edge is a butt cut and the trailing edge and the ply boundary essentially converge.
Abstract:
An anomaly detection and cataloging system is described that includes a handheld probe having a probe tip, a user interface, and a communications interface. The system further includes a system controller and a probe locating device. The probe is operable, via the user interface, for transmitting, via the communications interface, a user selected anomaly type to the system controller, the anomaly type being associated with a manufactured part or airplane on the ground (AOG). The probe locating device is operable to provide to the system controller a location associated with the probe tip, and the system is programmed to associate the user selected anomaly type with the location associated with the probe tip.
Abstract:
A method generally includes electronically accessing positional data defining a defect location on a composite structure, and automatically causing a material placement machine to return to the defect location as defined by the positional data. The method can also include automatically causing the material placement machine to place or lay down material sufficient for repairing a defect at the defect location. Alternatively, the material placement machine may automatically return to a defect location, and then an operator may manually repair the defect at the defect location.
Abstract:
To apply a course on a layup mold, a ply boundary that defines a ply area on the layup mold is determined and a tape of composite material is applied on the ply area at an oblique angle relative to the ply boundary. In addition, a leading edge of the tape is butt cut and the leading edge, and the ply boundary essentially converge. Furthermore, a trailing edge is generated. The trailing edge is a butt cut and the trailing edge and the ply boundary essentially converge.
Abstract:
An anomaly detection and cataloging system is described that includes a handheld probe having a probe tip, a user interface, and a communications interface. The system further includes a system controller and a probe locating device. The probe is operable, via the user interface, for transmitting, via the communications interface, a user selected anomaly type to the system controller, the anomaly type being associated with a manufactured part or airplane on the ground (AOG). The probe locating device is operable to provide to the system controller a location associated with the probe tip, and the system is programmed to associate the user selected anomaly type with the location associated with the probe tip.
Abstract:
A composite structure is fabricated by laying up at least one ply of fiber reinforcement and at least one layer of resin on a tool. The resin film layer is formed by laying strips of resin film. The fiber reinforcement is infused with resin from the resin layer.
Abstract:
A fiber placement system is described. The system includes a motion system having a robotic arm, a fiber-placement layup mandrel mounted on the robotic arm, and a fiber-placement delivery system having a delivery head. The robotic arm is operable for movement of the mandrel with respect to and proximate the delivery head for fabrication of a composite fiber part.
Abstract:
To apply a course on a layup mold, a ply boundary that defines a ply area on the layup mold is determined and a tape of composite material is applied on the ply area at an oblique angle relative to the ply boundary. In addition, a leading edge of the tape is butt cut and the leading edge, and the ply boundary essentially converge. Furthermore, a trailing edge is generated. The trailing edge is a butt cut and the trailing edge and the ply boundary essentially converge.