Abstract:
Provided is a cellulose derivative composition for a secondary battery binder, a method of preparing a composition for a secondary battery electrode, including the same, and a secondary battery including the same. According to the inventive concept, the cellulose derivative composition for a secondary battery binder may include a compound represented by Formula 1 below.
Abstract:
Provided are a solid electrolyte membrane, an all-solid-state battery including the same and methods of manufacturing thereof. The solid electrolyte membrane includes a texture-type support having oppositely disposed first side and second side, and having multiple pores inside thereof, and a solid electrolyte filling up the pores and covering at least one side of the support, wherein the support may include a lithium salt, a polymer material or a first solid electrolyte material, or combinations thereof, and show ion conductivity. The solid electrolyte may include a second solid electrolyte material.
Abstract:
Provided is a cellulose derivative composition for an all-solid-state secondary battery binder including a compound represented by Formula 1 below according to the inventive concept. In Formula 1, R1, R1′, R2, R2′, R3, and R3′ are each independently any one among a carboxymethyl group, a sulfur substituent, or a phosphorus substituent, in which a monovalent metal is substituted or hydrogen, wherein R1, R2, and R3 is —CH2COOX, , SO3X, —PO3X or —PO3X2 where X may be any one among sodium (Na), potassium (K), rubidium (Rb), or cesium (Cs). R1′, R2′, and R3′ is —CH2COOY, —SO3Y, —PO3Y or —PO3Y2 where Y may be lithium (Li).
Abstract:
An oxide-based solid electrolyte according to the present invention may be LixLa3M2O12 and may have a cubic phase. The oxide-based solid electrolyte may further include first and second dopants. A method of preparing an oxide-based solid electrolyte according to the concept of the present invention may include mixing a lithium compound, a lanthanum compound, a metal compound, a first dopant precursor, and a second dopant precursor to prepare an intermediate, and crystallizing the intermediate to prepare LixLa3M2O12 crystals having a cubic phase.
Abstract:
A solid polymeric electrolyte having a pattern, and a lithium battery including the same, includes a polymer matrix having a mesh structure and being formed of a cured photo-crosslinking agent; inorganic particles substantially uniformly distributed in the polymer matrix; and a liquid electrolyte comprised of a lithium salt and an organic solvent impregnated between the polymer matrix and the inorganic particles. The liquid electrolyte and the cured photo-crosslinking agent are present in a weight ratio ranging from 50:50 to 99:1. The liquid electrolyte containing the cured photo-crosslinking agent and the inorganic particle are present in a weight ratio ranging from 10:90 to 90:10. The solid polymeric electrolyte has properties suitable for a printing process to provide the pattern including a thickness ranging from about 10 nm to about 500 μm and, prior to curing the photo-crosslinking agent, a viscosity ranging from 100-10,000 poise under a shear rate condition of 1 sec−1.
Abstract:
Provided is a method for manufacturing a sulfide-based solid electrolyte including preparing a precursor comprising lithium sulfide, germanium sulfide, aluminum sulfide, phosphorus sulfide, and sulfur, conducting a mixing process of the precursor to prepare a mixture, and crystallizing the mixture to form a compound represented by Li9.7Al0.3Ge0.7P2S12. The sulfide-based solid electrolyte may have high ionic conductivity.
Abstract:
A lithium battery binder composition in accordance with some example embodiments of the inventive concept may include a lithium ion polymer, an inorganic particle and an organic solution in which a lithium salt is dissolved. The lithium ion polymer may be a cellulosic polymer having sulfonic acid lithium salt or carboxylic acid lithium salt functional group. The lithium ion polymer may be manufactured by substituting hydroxyl group or carboxylic group of cellulosic polymer. The lithium battery binder composition may be used to at least one of an electrolyte, a cathode layer and an anode layer.