Abstract:
A method of blind tap coefficient adaptation includes receiving a digital data signal including random digital data, equalizing a first portion of the digital data signal using a first set of predetermined tap coefficients and a second portion of the digital data signal using a second set of predetermined tap coefficients. The method includes generating a first eye diagram and a second eye diagram from a first portion and a second portion of an equalized signal, respectively. The first eye diagram is compared with the second eye diagram to determine which of the sets of predetermined tap coefficients results in a data signal having a higher signal quality. The method includes inputting to an equalizer as an initial set of tap coefficients the first set of predetermined tap coefficients or the second set of predetermined tap coefficients according to the determination.
Abstract:
A multi-channel receiver that includes a first clock recovery unit configured to recover a first clock signal associated with a first optical channel is disclosed. A first coefficient estimation unit estimates a first set of coefficients using the first clock signal. A second clock recovery unit configured to recover a second clock signal associated with a second optical channel using the first clock signal as a reference clock signal. A second coefficient estimation unit estimates a second set of coefficients using the first set of coefficients.
Abstract:
A method of transmitting data may include receiving feedback information that includes effective channel bandwidths, signal-to-noise ratios (SNRs) associated with multiple optical channels on an optical link, and individual SNRs associated with subcarriers on each optical channel. The method may include determining multiple subcarrier power allocation schemes based on the feedback information. Each subcarrier power allocation scheme may be associated with a corresponding optical channel from the multiple optical channels and may be configured to allocate a signal power among subcarriers configured to transmit on the corresponding optical channel. The method may include determining, based on the feedback information, an optical power allocation scheme configured to allocate an optical power among the multiple optical channels. The method may include transmitting data on the multiple optical channels based on the multiple subcarrier power allocation schemes and the optical power allocation scheme.
Abstract:
A multi-channel receiver that includes a first clock recovery unit configured to recover a first clock signal associated with a first optical channel is disclosed. A first coefficient estimation unit estimates a first set of coefficients using the first clock signal. A second clock recovery unit configured to recover a second clock signal associated with a second optical channel using the first clock signal as a reference clock signal. A second coefficient estimation unit estimates a second set of coefficients using the first set of coefficients.
Abstract:
A method of performing clock recovery and equalizer coefficient estimation in a multi-channel receiver may include recovering, at a first clock recovery unit, a first clock signal associated with a first channel. The method may include estimating a first set of coefficients for a first equalizer associated with the first channel using the first clock signal. The method may include passing the first clock signal to a second clock recovery unit associated with a second channel. The method may also include recovering, at the second clock recovery unit, a second clock signal associated with the second channel using the first clock signal as a reference clock signal. The method may also include passing the first set of coefficients as initialization coefficients to a second equalizer associated with the second channel. The method may also include estimating a second set of coefficients for the second equalizer using the initialization coefficients.
Abstract:
A method of performing clock recovery and equalizer coefficient estimation in a multi-channel receiver may include recovering, at a first clock recovery unit, a first clock signal associated with a first channel. The method may include estimating a first set of coefficients for a first equalizer associated with the first channel using the first clock signal. The method may include passing the first clock signal to a second clock recovery unit associated with a second channel. The method may also include recovering, at the second clock recovery unit, a second clock signal associated with the second channel using the first clock signal as a reference clock signal. The method may also include passing the first set of coefficients as initialization coefficients to a second equalizer associated with the second channel. The method may also include estimating a second set of coefficients for the second equalizer using the initialization coefficients.
Abstract:
A method of blind tap coefficient adaptation includes receiving a digital data signal including random digital data, equalizing a first portion of the digital data signal using a first set of predetermined tap coefficients and a second portion of the digital data signal using a second set of predetermined tap coefficients. The method includes generating a first eye diagram and a second eye diagram from a first portion and a second portion of an equalized signal, respectively. The first eye diagram is compared with the second eye diagram to determine which of the sets of predetermined tap coefficients results in a data signal having a higher signal quality. The method includes inputting to an equalizer as an initial set of tap coefficients the first set of predetermined tap coefficients or the second set of predetermined tap coefficients according to the determination.